Le Traon, P. Y. et al. From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci. 6, 234 (2019).
Google Scholar
Sun, R. et al. SKRIPS v1.0: A regional coupled ocean-atmosphere modeling framework (MITgcm-WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea. Geosci. Model Dev. 12, 4221–4244 (2019).
Google Scholar
Sakamoto, K. et al. Development of a 2-km resolution ocean model covering the coastal seas around Japan for operational application. Ocean Dyn. 69, 1181–1202 (2019).
Google Scholar
Ciliberti, S. A. et al. Monitoring and forecasting the ocean state and biogeochemical processes in the Black Sea: Recent developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 9, 1146 (2021).
Google Scholar
Kärnä, T. et al. Operational marine forecast model for the Baltic Sea. Nemo-Nordic 2.0. Geosci. Model Dev. 14, 5731–5749 (2021).
Zhu, X. et al. Improvements in the regional South China Sea operational oceanography forecasting system (SCSOFSv2). Geosci. Model Dev. 15, 995–1015 (2022).
Google Scholar
Bruschi, A. et al. Indexes for the assessment of bacterial pollution in bathing waters from point sources: The northern Adriatic Sea CADEAU service. J. Environ. Manag. 293, 112878 (2021).
Google Scholar
Liubartseva, S. et al. Modeling chronic oil pollution from ships. Mar. Pollut. Bull. (2023).
Mannarini, G., Salinas, M. L., Carelli, L., Petacco, N. & Orović, J. VISIR-2: Ship weather routing in Python. Geosci. Model Dev. 17, 4355–4382 (2024).
Google Scholar
Coppini, G. et al. The Mediterranean forecasting system-Part 1: Evolution and performance. Ocean Sci. 19, 1483–1516 (2023).
Google Scholar
Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).
Google Scholar
Nguyen, T. et al. Scaling transformer neural networks for skillful and reliable medium-range weather forecasting. Adv. Neural Inf. Process. Syst. 37, 68740–68771 (2024).
Google Scholar
Pathak, J. et al. FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators. arXiv preprint arXiv:2202.11214 (2022).
Keisler, R. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575 (2022).
Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).
Google Scholar
Oskarsson, J., Landelius, T., Deisenroth, M. & Lindsten, F. Probabilistic weather forecasting with hierarchical graph neural networks. Adv. Neural Inf. Process. Syst. 37, 41577–41648 (2024).
Google Scholar
Dheeshjith, S. et al. Samudra: An AI global ocean emulator for climate. Geophys. Res. Lett. 52(10), e2024GL114318 (2025).
Google Scholar
Wang, C. et al. Coupled ocean-atmosphere dynamics in a machine learning Earth system model. arXiv preprint arXiv:2406.08632 (2024).
Guo, Z. et al. Data-driven global ocean modeling for seasonal to decadal prediction. arXiv preprint arXiv:2405.15412 (2024).
Wang, X. et al. XiHe: A data-driven model for global ocean eddy-resolving forecasting. arXiv preprint arXiv:2402.02995 (2024).
Aouni, A. E. et al. GLONET: Mercator’s end-to-end neural forecasting system. arXiv preprint arXiv:2412.05454 (2024).
Cui, Y. et al. Forecasting the eddying ocean with a deep neural network. Nat. Commun. 16, 2268 (2025).
Google Scholar
Andersson, T. R. et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun. 12, 5124 (2021).
Google Scholar
Chattopadhyay, A., Gray, M., Wu, T., Lowe, A. B. & He, R. OceanNet: A principled neural operator-based digital twin for regional oceans. Sci. Rep. 14, 21181 (2024).
Google Scholar
Subel, A. & Zanna, L. Building ocean climate emulators. arXiv preprint arXiv:2402.04342 (2024).
Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In International Conference on Machine Learning. 8459–8468 (2020).
Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model. 3, 1–20 (2001).
Google Scholar
Escudier, R. et al. A high resolution reanalysis for the Mediterranean Sea. Front. Earth Sci. 9, 702285 (2021).
Google Scholar
Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1940 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2023).
Molteni, F., Buizza, R., Palmer, T. N. & Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996).
Google Scholar
Lang, S. et al. AIFS – ECMWF’s data-driven forecasting system. arXiv preprint arXiv:2406.01465 (2024).
ECMWF. Plans for high resolution forecast (HRES) and ensemble forecast (ENS). In focus (2024). https://www.ecmwf.int/en/about/media-centre/focus/2024/plans-high-resolution-forecast-hres-and-ensemble-forecast-ens.
Nardelli, B. B., Tronconi, C., Pisano, A. & Santoleri, R. High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Remote Sens. Environ. 129, 1–16 (2013).
Google Scholar
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Google Scholar
Kochkov, D. et al. Neural general circulation models for weather and climate. Nature 632, 1060–1066 (2024).
Google Scholar
Marshall, J. & Schott, F. Open-ocean convection: Observations, theory, and models. Rev. Geophys. 37, 1–64 (1999).
Google Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).
Google Scholar
Wunsch, C. & Stammer, D. Atmospheric loading and the oceanic inverted barometer effect. Rev. Geophys. 35, 79–107 (1997).
Google Scholar
Gill, A. E. Atmosphere–Ocean Dynamics (Academic Press, 1982).
Clementi, E. et al. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea. Ocean Dyn. 67, 1293–1312 (2017).
Google Scholar
McDonagh, B., Clementi, E., Goglio, A. C. & Pinardi, N. The characteristics of tides and their effects on the general circulation of the Mediterranean Sea. Ocean Sci. 20, 1051–1066 (2024).
Google Scholar
Rühling Cachay, S., Zhao, B., Joren, H. & Yu, R. Dyffusion: A dynamics-informed diffusion model for spatiotemporal forecasting. Adv. Neural Inf. Process. Syst. 36, 45259–45287 (2023).
Google Scholar
Andrae, M., Landelius, T., Oskarsson, J. & Lindsten, F. Continuous ensemble weather forecasting with diffusion models. In International Conference on Learning Representations (2025).
Nipen, T. N. et al. Regional data-driven weather modeling with a global stretched-grid. arXiv preprint arXiv:2409.02891 (2024).
Adamov, S. et al. Building machine learning limited area models: Kilometer-scale weather forecasting in realistic settings. arXiv preprint arXiv:2504.09340 (2025).
Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: A foundation model for weather and climate. In International Conference on Machine Learning (2023).
Bodnar, C. et al. A foundation model for the Earth system. Nature 1–8 (2025).
Price, I. et al. Probabilistic weather forecasting with machine learning. Nature 637, 84–90 (2025).
Google Scholar
Larsson, E., Oskarsson, J., Landelius, T. & Lindsten, F. Diffusion-LAM: Probabilistic limited area weather forecasting with diffusion. arXiv preprint arXiv:2502.07532 (2025).
Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A. & Battaglia, P. Multiscale meshgraphnets. arXiv preprint arXiv:2210.00612 (2022).
Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D. et al. Interaction networks for learning about objects, relations and physics. Adv. Neural Inf. Process. Syst. 29 (2016).
Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017).
Ba, J., Kiros, J. & Hinton, G. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In International Conference on Learning Representations (2019).
Madec, G. et al. NEMO ocean engine. In Scientific Notes of Climate Modelling Center. Vol. 27 (2017).
WAVEWATCH III Development Group (WW3DG). User Manual and System Documentation of WAVEWATCH III Version 6.07. In Technical Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA (2019).
Dobricic, S. & Pinardi, N. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model. 22, 89–105 (2008).
Google Scholar
Weatherall, P. et al. A new digital bathymetric model of the world’s oceans. Earth Sp. Sci. 2, 331–345 (2015).
Google Scholar
Hellerman, S. & Rosenstein, M. Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104 (1983).
Google Scholar