Wu, A. M. et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longevity 2(9), e580–e592. https://doi.org/10.1016/s2666-7568(21)00172-0 (2021).
Amin, S., Achenbach, S. J., Atkinson, E. J., Khosla, S. & Melton, L. J. Trends in fracture incidence: a population-based study over 20 years. J. Bone Min. Res. 29 (3), 581–589. https://doi.org/10.1002/jbmr.2072 (2014). 3rd.
Wennergren, D. et al. Epidemiology and incidence of tibia fractures in the Swedish fracture register. Injury 49 (11), 2068–2074. https://doi.org/10.1016/j.injury.2018.09.008 (2018).
Padilla-Eguiluz, N. G. & Gómez-Barrena, E. Epidemiology of long bone non-unions in Spain. Injury, 52 Suppl 4, S3-s7. (2021). https://doi.org/10.1016/j.injury.2021.02.053
Mills, L. A., Aitken, S. A. & Simpson, A. The risk of non-union per fracture: current Myths and revised figures from a population of over 4 million adults. Acta Orthop. 88 (4), 434–439. https://doi.org/10.1080/17453674.2017.1321351 (2017).
Mills, L. A. & Simpson, A. H. The relative incidence of fracture non-union in the Scottish population (5.17 million): a 5-year epidemiological study. BMJ Open. 3 (2). https://doi.org/10.1136/bmjopen-2012-002276 (2013).
Zura, R. et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 151 (11), e162775. https://doi.org/10.1001/jamasurg.2016.2775 (2016).
Calori, G. M., Mazza, E., Colombo, M., Ripamonti, C. & Tagliabue, L. Treatment of long bone non-unions with polytherapy: indications and clinical results. Injury 42 (6), 587–590. https://doi.org/10.1016/j.injury.2011.03.046 (2011).
Ekegren, C. L., Edwards, E. R., de Steiger, R. & Gabbe, B. J. Incidence costs and predictors of non-Union, delayed union and mal-union following long bone fracture. Int. J. Environ. Res. PublicHealth https://doi.org/10.3390/ijerph15122845 (2018).
Busse, J. W., Bhandari, M., Sprague, S., Johnson-Masotti, A. P. & Gafni, A. An economic analysis of management strategies for closed and open grade I tibial shaft fractures. Acta Orthop. 76 (5), 705–712. https://doi.org/10.1080/17453670510041808 (2005).
Hak, D. J. et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45 (Suppl 2), 3–7. https://doi.org/10.1016/j.injury.2014.04.002 (2014).
Nicholson, J. A., Yapp, L. Z., Keating, J. F. & Simpson, A. Monitoring of fracture healing. Update on current and future imaging modalities to predict union. Injury 52 Suppl 2, S29–s34. https://doi.org/10.1016/j.injury.2020.08.016 (2021).
Bhandari, M. et al. Assessment of radiographic fracture healing in patients with operatively treated femoral neck fractures. J. Orthop. Trauma. 27 (9), e213–219. https://doi.org/10.1097/BOT.0b013e318282e692 (2013).
Litrenta, J. et al. Determination of radiographic healing: an assessment of consistency using RUST and modified RUST in metadiaphyseal fractures. J. Orthop. Trauma. 29 (11), 516–520. https://doi.org/10.1097/bot.0000000000000390 (2015).
Bhandari, M. et al. Radiographic union score for hip substantially improves agreement between surgeons and radiologists. BMC Musculoskelet. Disord. 14, 70. https://doi.org/10.1186/1471-2474-14-70 (2013).
Kienast, B. et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Joint Res. 5 (5), 191–197. https://doi.org/10.1302/2046-3758.55.2000611 (2016).
Windolf, M. et al. Continuous implant load monitoring to assess bone healing Status-Evidence from animal testing. Med. (Kaunas). 58 (7). https://doi.org/10.3390/medicina58070858 (2022).
Pelham, H. et al. Implantable strain sensor to monitor fracture healing with standard radiography. Sci. Rep. 7 (1), 1489. https://doi.org/10.1038/s41598-017-01009-7 (2017).
Umbrecht, F. et al. Wireless implantable passive strain sensor: design, fabrication and characterization. J. Micromech. Microeng. 20 (8). https://doi.org/10.1088/0960-1317/20/8/085005 (2010).
Rajamanthrilage, A. et al. Measuring orthopedic plate strain to track bone healing using a fluidic sensor read via plain radiography. IEEE Trans. Biomed. Eng. 69 (1), 278–285. https://doi.org/10.1109/tbme.2021.3092291 (2022).
Borchani, W., Aono, K., Lajnef, N. & Chakrabartty, S. Monitoring of postoperative bone healing using smart Trauma-Fixation device with integrated Self-Powered Piezo-Floating-Gate sensors. IEEE Trans. Biomed. Eng. 63 (7), 1463–1472. https://doi.org/10.1109/tbme.2015.2496237 (2016).
Najafzadeh, A. et al. Application of fibre Bragg grating sensors in strain monitoring and fracture recovery of human femur bone. Bioeng. (Basel). 7 (3). https://doi.org/10.3390/bioengineering7030098 (2020).
McGilvray, K. C. et al. Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing. J. Orthop. Res. 33 (10), 1439–1446. https://doi.org/10.1002/jor.22918 (2015).
Ledet, E. H. et al. Smart fracture plate for quantifying fracture healing: preliminary efficacy in a Biomechanical model. J. Orthop. Res. 40 (10), 2414–2420. https://doi.org/10.1002/jor.25254 (2022).
Chancharoen, P., Tangpornprasert, P., Amarase, C., Tantavisut, S. & Virulsri, C. Design of osteosynthesis plate for detecting bone union using wire natural frequency. Sci. Rep. 14 (1), 12569. https://doi.org/10.1038/s41598-024-63530-w (2024).








