Pires, L. M., Alves, T., Vassaramo, M. & Fialho, V. Design and development of a High-Accuracy IoT system for Real-Time load and space monitoring in shipping containers. Designs 9 (2), 43. https://doi.org/10.3390/designs9020043 (2025).
Flores, A. et al. Real-Time speed measurement of moving objects with continuous wave doppler radar using Software-Defined radio: implementation and performance analysis. Electronics 14 (21), 4225. https://doi.org/10.3390/electronics14214225 (2025).
Wen, B., Wei, Y. & Lu, Z. Sea clutter suppression and target detection algorithm of marine radar image sequence based on Spatio-Temporal domain joint filtering. Entropy 24 (2), 250. https://doi.org/10.3390/e24020250 (2022).
Wen, B., Lu, Z. & Zhou, B. Marine radar constant false alarm rate detection in generalized extreme value distribution based on Space-Time adaptive filtering clutter statistical analysis. Remote Sens. 16 (19), 3691. https://doi.org/10.3390/rs16193691 (2024).
Durlik, I., Miller, T., Kostecka, E., Kozlovska, P. & Ślączka, W. Enhancing safety in autonomous maritime transportation systems with Real-Time AI agents. Appl. Sci. 15 (9), 4986. https://doi.org/10.3390/app15094986 (2025).
Oruc, A., Kavallieratos, G., Gkioulos, V. & Katsikas, S. Perspectives on the cybersecurity of the integrated navigation system. J. Mar. Sci. Eng. 13 (6), 1087. https://doi.org/10.3390/jmse13061087 (2025).
Miller, T. et al. Artificial intelligence in maritime cybersecurity: A systematic review of AI-Driven threat detection and risk mitigation strategies. Electronics 14 (9), 1844. https://doi.org/10.3390/electronics14091844 (2025).
Lv, Z. et al. Unmanned surface vessels in marine surveillance and management: advances in Communication, Navigation, Control, and Data-Driven research. J. Mar. Sci. Eng. 13 5, 969. https://doi.org/10.3390/jmse13050969 (2025).
Wang, Y. et al. Visual navigation systems for maritime smart ships: A survey. J. Mar. Sci. Eng. 12 (10), 1781. https://doi.org/10.3390/jmse12101781 (2024).
Md, A., Hossain & Islam, M. S. Ensuring network security with a robust intrusion detection system using ensemble-based machine learning. Array 19, 100306. https://doi.org/10.1016/j.array.2023.100306 (2023).
Hossain, M. A. & FED-GEM-CN A federated dual-CNN architecture with contrastive cross-attention for maritime radar intrusion detection. Array 27, 100456. https://doi.org/10.1016/j.array.2025.100456 (2025).
Ibokette, A. I. et al. Mitigating maritime cybersecurity risks using AI-Based intrusion detection systems and network automation during extreme environmental conditions. Int. J. Sci. Res. Mod. Technol. IJSRMT. 3 (10), 65–91. https://doi.org/10.38124/ijsrmt.v3i10.73 (2024).
Durlik, I., Miller, T., Kostecka, E. & Tuński, T. Artificial intelligence in maritime transportation: A comprehensive review of safety and risk management applications. Appl. Sci. 14 (18), 8420. https://doi.org/10.3390/app14188420 (2024).
Ammar, M. & Khan, I. A. Cyber Attacks on Maritime Assets and their Impacts on Health and Safety Aboard: A Holistic View, arXiv. https://doi.org/10.48550/ARXIV.2407.08406 (2024).
Ishtiaq, W. et al. CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks. Array 27, 100501. https://doi.org/10.1016/j.array.2025.100501 (2025).
Hossain, M. A. Deep Q-learning intrusion detection system (DQ-IDS): A novel reinforcement learning approach for adaptive and self-learning cybersecurity. ICT Express. 11 (5), 875–880. https://doi.org/10.1016/j.icte.2025.05.007 (2025).
Rihan, M. Y., Nossair, Z. B. & Mubarak, R. I. An improved CFAR algorithm for multiple environmental conditions. Signal. Image Video Process. 18 (4), 3383–3393. https://doi.org/10.1007/s11760-024-03001-x (2024).
He, X. et al. Maritime target radar detection and tracking via DTNet transfer learning using Multi-Frame images. Remote Sens. 17 (5), 836. https://doi.org/10.3390/rs17050836 (2025).
Kim, H. & Joe, I. Enhancing anomaly detection in maritime operational IoT time series data with synthetic outliers. Electronics 13 (19), 3912. https://doi.org/10.3390/electronics13193912 (2024).
Hossain, M. A. et al. Toward Secure Marine Navigation: A Deep Learning Framework for Radar Network Attack Detection, in Maritime Cybersecurity, S. Bauk, Ed., in Signals and Communication Technology., Cham: (Springer Nature Switzerland, 2025). 195–215. https://doi.org/10.1007/978-3-031-87290-7_11
Hossain, M. A., Hossain, M. D., Choupani, R. & Doǧdu, E. MRS-PFIDS: federated learning driven detection of network intrusions in maritime radar systems. Int. J. Inf. Secur. 24 (2), 92. https://doi.org/10.1007/s10207-025-01008-0 (2025).
Venskus, J., Treigys, P., Bernatavičienė, J., Tamulevičius, G. & Medvedev, V. Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding,Sensors, 19, 17, 3782, doi: https://doi.org/10.3390/s19173782. (2019).
Hossain, M. A. et al. Enhancing Marine Radar Security Through Semi-Supervised Learning: A Self-Training Approach, in 2024 2nd International Conference on Information and Communication Technology (ICICT), Dhaka, Bangladesh: IEEE, Dhaka, Bangladesh: IEEE, 279–283. https://doi.org/10.1109/ICICT64387.2024.10839737 (2024).
Mangé, V., Tourneret, J. Y., Vincent, F., Mirambell, L. & Manzoni Vieira, F. Anomaly detection in ship trajectories using machine learning and dynamic time warping. Eng. Appl. Artif. Intell. 157, 111185. https://doi.org/10.1016/j.engappai.2025.111185 (2025).
Singh, S. K. & Heymann, F. Machine Learning-Assisted Anomaly Detection in Maritime Navigation using AIS Data, in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA: IEEE, 832–838. https://doi.org/10.1109/PLANS46316.2020.9109806 (2020).
Addabbo, P. et al. Temporal convolutional neural networks for radar Micro-Doppler based gait recognition. Sensors 21 (2), 381. https://doi.org/10.3390/s21020381 (2021).
He, Y. et al. In-Depth insights into the application of recurrent neural networks (RNNs) in traffic prediction: A comprehensive review. Algorithms 17 (9), 398. https://doi.org/10.3390/a17090398 (2024).
Ruan, G. et al., Telecommun Radio Eng., 79, 4, 305–321, doi: https://doi.org/10.1615/TelecomRadEng.v79.i4.40. (2020).
Bai, N. & Joe, I. Deep learning methods with the improved attention for explainable image recognition. IEEE Access. 12, 70559–70567. https://doi.org/10.1109/ACCESS.2024.3397323 (2024).
Md, A. et al. Deep learning and ensemble methods for anomaly detection in ICS security. Int. J. Inf. Technol. 17 (3), 1761–1775. https://doi.org/10.1007/s41870-024-02299-7 (2025).
Wolsing, K. et al. RadarPWN Zenodo, 15, doi: https://doi.org/10.5281/ZENODO.6805559. (2022).
Sawada, R. et al. Perspective on the Marine Simulator for Autonomous Vessel Development,., arXiv. https://doi.org/10.48550/ARXIV.2407.19673 (2024).
Baldauf, M., Besikci, E. B. & Shi, X. Simulating growing complexity in maritime traffic. Trans. Marit Sci. 14, 02, https://doi.org/10.7225/toms.v14.n02.s10 (2025).
About OpenCPN. Accessed: 03, 2025. [Online]. Available: https://opencpn.org/OpenCPN/info/about.html
Enhancing Maritime Training: The Role of VR in Ship Bridge Simulators – The CAL-TEK Case Study, in Proceedings of the 26th International Conference on Harbor, Maritime and Multimodal Logistic Modeling &. Simulation, CAL-TEK srl, https://doi.org/10.46354/i3m.2024.hms.012 (2024).
Chen, R., Zhang, Y., Li, X. & Ran, J. An analysis and simulation of security risks in radar networks from the perspective of cybersecurity. Sensors 25 (17), 5239. https://doi.org/10.3390/s25175239 (2025).



