CHICAGO – Loyola Chicago opens Atlantic 10 action at Rhode Island on New Year’s Eve. The Ramblers…
Author: admin
-

Queensland weather UGC compile – ABC News
Footer
Your home of Australian stories, conversations and events that shape our nation.
Contact ABC News
This service may include material from Agence France-Presse (AFP), APTN, Reuters, AAP, CNN and the BBC World Service which is copyright and…
Continue Reading
-

European Homo sapiens May Have Been Hunting with Bow and Arrow Earlier than Previously Believed
In a new paper published this month in the journal iScience, researchers from the University of Tübingen and elsewhere present a multidisciplinary analysis of stone and bone projectile points associated with Homo sapiens in the early Upper…
Continue Reading
-

Secord Rolls Out JMU Men’s Tennis’ Spring Schedule
HARRISONBURG, Va. – James Madison Head Coach Steve Secord announced the men’s tennis program’s spring dual-match schedule, which features 21 matches, including seven at home.
The Dukes will compete against four Sun Belt Conference opponents…Continue Reading
-

Hum along with Winnie-the-Pooh this weekend
Anchorage Festival of Music will celebrate the 100th anniversary of the classic children’s book character, Winnie-the-Pooh, this Sunday with two concerts. The shows will feature Pooh Bear’s whimsical…
Continue Reading
-

Upcoming Traffic Switch for I-80 North Fork Bridges Project | Department of Transportation
Indiana, PA – The Pennsylvania Department of Transportation (PennDOT) and Bridging Pennsylvania Constructors (BPC) are announcing an upcoming traffic switch on I-80 westbound from the median side to the completed outside portion of the bridge over Jenks Street in support of the I-80 North Fork Bridges Project in Jefferson County.
The traffic switch is weather permitting and is scheduled to occur on January 7, 2026, at 7:00 AM. As the switch is weather dependent, it may be delayed to later that week or into the following week if necessary.
Motorists traveling through the area should expect changes in traffic patterns and are reminded to follow all posted signage and use caution while driving through the work zone.
This project is part of the ongoing PennDOT Major Bridges P3 Program. Bridging Pennsylvania Developers – I (BPD-I) is led jointly by Shikun & Binui Ltd and Macquarie Capital as Lead Project Developers and Equity Members. The Bridging Pennsylvania Constructors (BPC) joint venture (JV) consortium includes the design & construction expertise of S&B USA Construction (Pittsburgh, PA) and FCC Construction. S&B USA Construction is the construction arm of Shikun & Binui Ltd and is also the parent company of Fay, S&B USA Construction (Pittsburgh, PA), one of the four BPC Major Bridge subcontractors. Other Major Bridge subcontractors include the H&K Group (Skippack, PA), Kokosing Construction Company (Pittsburgh, PA), Wagman Heavy Civil (York, PA), and Lead Designer, Michael Baker International (Pittsburgh, PA).
Motorists can check conditions on major roadway miles by visiting www.511PA.com. 511PA, which is free and available 24 hours a day, provides traffic delay warnings, weather forecasts, traffic speed information, and access to more than 1,000 traffic cameras.
511PA is also available through a smartphone application for iPhone and Android devices, by calling 5-1-1, or by following regional Twitter alerts accessible on the 511PA website.
Subscribe to PennDOT news in in Armstrong, Butler, Clarion, Indiana, and Jefferson counties at www.penndot.pa.gov/District10.
Find PennDOT news on X, Facebook, and Instagram.
# # #
Media Contact: Tina Gibbs, chgibbs@pa.gov or 724-357-2829
Continue Reading
-
A novel multidisciplinary approach for crude oil classification based on structural characteristics of asphaltenes
Asemani, M., Rabbani, A. R. & Sarafdokht, H. Evaluation of oil fingerprints similarity by a novel technique based on FTIR spectroscopy of asphaltenes: Modified moving window correlation coefficient technique. Mar Pet Geol 120, 104542 (2020).
Behrenbruch, P. & Dedigama, T. Classification and characterisation of crude oils based on distillation properties. J Pet Sci Eng 57, 166–180 (2007).
Barwise, A. J. G. Role of nickel and vanadium in petroleum classification. Energy & Fuels 4, 647–652 (1990).
Asemani, M. & Rabbani, A. R. Oil-oil correlation by FTIR spectroscopy of asphaltene samples. Geosciences Journal 20, 273–283 (2016).
Rabbani, A. R., Sadouni, J. & Asemani, M. Chemometric investigation of oil families and geochemical characterization of crude oils in the Northern Dezful Embayment Zone. SW Iran. J Pet Sci Eng 214, 110496 (2022).
El-Gayar, M. S., Mostafa, A. R., Abdelfattah, A. E. & Barakat, A. O. Application of geochemical parameters for classification of crude oils from Egypt into source-related types. Fuel processing technology 79, 13–28 (2002).
Asemani, M. & Rabbani, A. R. A novel and efficient chemometric approach to identifying oil families by saturate biomarker data and FTIR spectroscopy of asphaltene subfractions. Mar Pet Geol 124, 104838 (2021).
Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. (Cambridge University Press, 2005).
Traxler, M. C. & others. 19. Composition of Chromatographic and Thermal Diffusion Fractions of Typical Asphalts. in 5th World Petroleum Congress (1959).
fu Yen, T. The charge-transfer nature of bitumens. Fuel 52, 93–98 (1973).
Riley, B. J., Lennard, C., Fuller, S. & Spikmans, V. An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting. Forensic Sci Int 266, 555–564 (2016).
Carvalho, V. V. et al. Revealing the chemical characterization of asphaltenes fractions produced by N-methylpyrrolidone using FTIR, molecular fluorescence, 1 H NMR, and ESI (±) FT-ICR MS. Fuel 210, 514–526 (2017).
Sharma, B. K., Sharma, C. D., Tyagi, O. S., Bhagat, S. D. & Erhan, S. Z. Structural characterization of asphaltenes and ethyl acetate insoluble fractions of petroleum vacuum residues. Pet Sci Technol 25, 121–139 (2007).
Mullins, O. C. The asphaltenes. Annual review of analytical chemistry 4, 393–418 (2011).
Sharma, A. K. et al. Machine learning to identify structural motifs in asphaltenes. Results Chem 7, 101551 (2024).
Rubinstein, I., Spyckerelle, C. & Strausz, O. P. Pyrolysis of asphaltenes: a source of geochemical information. Geochim Cosmochim Acta 43, 1–6 (1979).
Behar, F. & Pelet, R. Characterization of asphaltenes by pyrolysis and chromatography. J Anal Appl Pyrolysis 7, 121–135 (1984).
Lehne, E., Dieckmann, V., di Primio, R., Fuhrmann, A. & Horsfield, B. Changes in gas composition during simulated maturation of sulfur rich type II-S source rock and related petroleum asphaltenes. Org Geochem 40, 604–616 (2009).
Lamontagne, J., Dumas, P., Mouillet, V. & Kister, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 80, 483–488 (2001).
Permanyer, A., Douifi, L., Lahcini, A., Lamontagne, J. & Kister, J. FTIR and SUVF spectroscopy applied to reservoir compartmentalization: a comparative study with gas chromatography fingerprints results. Fuel 81, 861–866 (2002).
Permanyer, A., Douifi, L., Dupuy, N., Lahcini, A. & Kister, J. FTIR and SUVF spectroscopy as an alternative method in reservoir studies. Application to Western Mediterranean oils. Fuel 84, 159–168 (2005).
Permanyer, A., Rebufa, C. & Kister, J. Reservoir compartmentalization assessment by using FTIR spectroscopy. J Pet Sci Eng 58, 464–471 (2007).
Márquez, G. et al. Intra-and inter-field compositional changes of oils from the Misoa B4 reservoir in the Ceuta Southeast Area (Lake Maracaibo, Venezuela). Fuel 167, 118–134 (2016).
Asemani, M., Rabbani, A. R. & Sarafdokht, H. Origin, geochemical characteristics and filling pathways in the Shadegan oil field, Dezful Embayment, SW Iran. Journal of African Earth Sciences 174, 104047 (2021).
Li, J., Chu, X., Tian, S. & Lu, W. The identification of highly similar crude oils by infrared spectroscopy combined with pattern recognition method. Spectrochim Acta A Mol Biomol Spectrosc 112, 457–462 (2013).
Berberian, M. & King, G. C. P. Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18, 210–265 (1981).
Stocklin, J. Structural history and tectonics of Iran: a review. Am Assoc Pet Geol Bull 52, 1229–1258 (1968).
Opera, A. et al. Burial history reconstruction and thermal maturity modeling for the Middle Cretaceous-Early Miocene Petroleum System, southern Dezful Embayment. SW Iran. Int J Coal Geol 120, 1–14 (2013).
Sepehr, M. & Cosgrove, J. W. Structural framework of the Zagros fold–thrust belt. Iran. Mar Pet Geol 21, 829–843 (2004).
Falcon, N. L. Major earth-flexuring in the Zagros Mountains of south-west Iran. Quarterly J. Geol. Soc. 117, 367–376 (1961).
Colman-Sadd, S. P. Fold development in Zagros simply folded belt, Southwest Iran. Am Assoc Pet Geol Bull 62, 984–1003 (1978).
Sherkati, S. & Letouzey, J. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment). Iran. Mar Pet Geol 21, 535–554 (2004).
James, G. A. & Wynd, J. G. Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49, 2182–2245 (1965).
Setudehnia, A. The mesozoic sequence in south-west Iran and adjacent areas. J. Pet. Geol. 1, 3–42 (1978).
Motiei, H. Geology of Iran: stratigraphy of Zagros. Geological survey of Iran. 1, 536 (1993).
Bordenave, M. L. & Hegre, J. A. (2010) Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geological Society, London, Special Publications; Edited by Leturmy, P. and Robin, C. 330, 291–353.
Bordenave, M. L. Petroleum systems and distribution of the oil and gas fields in the Iranian part of the Tethyan region. (2014).
Alipour, M. Basics of Petroleum Geochemistry. (Springer Nature Switzerland, Cham, 2025). https://doi.org/10.1007/978-3-031-86938-9.
Alipour, M. Petroleum systems of the Iranian Zagros Fold and Thrust Belt. Results in Earth Sciences 2, 100027 (2024).
Bordenave, M. L. & Burwood, R. The Albian Kazhdumi Formation of the Dezful Embayment, Iran: one of the most efficient petroleum generating systems. in Petroleum Source Rocks 183–207 (In: Katz B.J. (ed) Petroleum Source Rocks. Casebooks in Earth Sciences. Springer, Berlin, Heidelberg, 1995).
Bordenave, M. L. & Burwood, R. Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Org Geochem 16, 369–387 (1990).
Alipour, M., Alizadeh, B. & Mirzaie, S. Petroleum system analysis of the Paleozoic series in the Fars platform of Iran. J. Pet. Sci. Eng. 208, 109557 (2022).
Gholami, Z., Alipour, M. & Ammari, A. Organofacies heterogeneity of the Aptian-Albian source rock (Kazhdumi Formation) in selected oilfields from the Zagros Basin. J. Stratigraphy Sedimentol. Res. 40, 63–74 (2024).
Bordenave, M. L. & Huc, A. Y. The Cretaceous source rocks in the Zagros foothills of Iran. Revue de L’institut Français du Petrole 50, 727–752 (1995).
Esrafili-Dizaji, B. & Rahimpour-Bonab, H. Carbonate reservoir rocks at giant oil and gas fields in SW Iran and the adjacent offshore: a review of stratigraphic occurrence and poro-perm characteristics. J. Pet. Geol. 42, 343–370 (2019).
Kobraei, M., Sadouni, J. & Rabbani, A. R. Organic geochemical characteristics of Jurassic petroleum system in Abadan Plain and north Dezful zones of the Zagros basin, southwest Iran. J. Earth Sys. Sci. 128, 50 (2019).
D6560, A. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. Annual Book of Standards (2017).
Asemani, M. & Rabbani, A. R. Crude oil fingerprint heterogeneity assessment by investigation of asphaltene subfractions: Implementation for reservoir continuity evaluation. J Pet Sci Eng 195, 107925 (2020).
Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. (John Wiley & Sons, 2003).
Massart, D. L. et al. Handbook of chemometrics and qualimetrics: Part A. Appl Spectrosc 52, 302A (1998).
Primerano, K., Mirwald, J. & Hofko, B. Asphaltenes and maltenes in crude oil and bitumen: A comprehensive review of properties, separation methods, and insights into structure, reactivity and aging. Fuel 368, 131616 (2024).
Suri, N. N. R. M. R., Murty, M. N. & Athithan, G. Outlier Detection: Techniques and Applications. (Springer, 2019).
Asemani, M. & Rabbani, A. R. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J Pet Sci Eng 185, 106618 (2020).
Pavia, D. L., Lampman, G. M., Kriz, G. S. & Vyvyan, J. A. Introduction to Spectroscopy 4th edn. (Cengage Learning, 2008).
Smith, B. C. Infrared Spectral Interpretation: A Systematic Approach (CRC Press, 1998).
Lin-Vien, D., Colthup, N. B., Fateley, W. G. & Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. (Elsevier, 1991).
Yen, T. F., Erdman, J. G. & Pollack, S. S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal Chem 33, 1587–1594 (1961).
Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A. H. & Husein, M. M. Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. J Mol Liq 264, 410–424 (2018).
Sadeghtabaghi, Z., Rabbani, A. R. & Hemmati-Sarapardeh, A. A review on asphaltenes characterization by X-ray diffraction: Fundamentals, challenges, and tips. J Mol Struct. 1238, 130425 (2021).
Lewan, M. . Do. . Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim Cosmochim Acta. 48, 2231–2238 (1984).
Akinlua, A., Ajayi, T. R. & Adeleke, B. B. Organic and inorganic geochemistry of northwestern Niger Delta oils. Geochem J 41, 271–281 (2007).
Akinlua, A., Sigedle, A., Buthelezi, T. & Fadipe, O. A. Trace element geochemistry of crude oils and condensates from South African Basins. Mar Pet Geol 59, 286–293 (2015).
Duyck, C., Miekeley, N., da Silveira, C. L. P. & Szatmari, P. Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions. Spectrochim Acta Part B At Spectrosc 57, 1979–1990 (2002).
Continue Reading
-
From Invest Atlanta: Atlanta Emerging Markets Receives a $75 Million New Markets Tax Credit Award from U.S. Department of the Treasury – City of Atlanta (.gov)
- From Invest Atlanta: Atlanta Emerging Markets Receives a $75 Million New Markets Tax Credit Award from U.S. Department of the Treasury City of Atlanta (.gov)
- United Bank Wins Eighth New Markets Tax Credit Allocation for $75 Million PR Newswire
- Forward Community Investments awarded $55 million to fund community development projects Madison365
- Treasury awards $10B in tax credits to support economic development Tribal Business News
- FirstPathway Community Development Awarded $85 Million in New Market Tax Credits WebWire
Continue Reading
-

Samsung Galaxy S26 Ultra dummy units star in live images, hands-on video
If you wanted to take a closer look at the design of the upcoming Samsung Galaxy S26 Ultra, today some pictures showing dummy units have been outed, along with a quick hands-on video (of the dummies).
In the first photo below you can see…
Continue Reading
-

AJ Dancler Named SBC Men’s Basketball Player Of The Week
NEW ORLEANS (sunbeltsports.org) – Coastal Carolina junior guard A.J. Dancler has been named Sun Belt…
Continue Reading
