Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X (1965).
Google Scholar
Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 (1986).
Google Scholar
B. C. Cuong, Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems with applications Inst. Math. Hanoi (2013).
Atanassov, K. T. Circular intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 39(5), 5981–5986 (2020).
Google Scholar
Xu, Y. & Zhang, D. Identifying AI-driven emerging trends in service innovation and digitalized industries using the circular picture fuzzy WASPAS approach. Symmetry 17(9), 1546 (2025).
Google Scholar
Liu, S. & Zhao, D. Diffusion and economic growth fuzzy intelligent system based on DSGE model. J. Intell. Fuzzy Syst. 40(4), 5975–5983. https://doi.org/10.3233/JIFS-189437 (2021).
Google Scholar
F. Subkhan, M. S. Maarif, N. T. Rochman, and Y. Nugraha, Digital economy: reinforcing competitive economy of smart cities, A Fuzzy-AHP Approach In 2024 International Conference on ICT for Smart Society (ICISS) IEEE 1–10 Accessed Oct 01 2025. Available: https://ieeexplore.ieee.org/abstract/document/10751367/ (2024)
R. Imamguluyev, A. Panahov, A. Jabbarov, A. Hajiyev, and K. Aghayeva, “The Role of Fuzzy Logic in the Digital Transformation of Economics: Innovative Analysis and Strategies,” in Intelligent and Fuzzy Systems, vol. 1530, C. Kahraman, S. Cebi, B. Oztaysi, S. Cevik Onar, C. Tolga, I. Ucal Sari, and I. Otay, Eds., in Lecture Notes in Networks and Systems, vol. 1530. , Cham: Springer Nature Switzerland, 2025, pp. 676–683. https://doi.org/10.1007/978-3-031-98565-2_73.
Zhang, X. & Wang, A. Enhancing the performance of vocational education in the digital economy with the application of fuzzy logic algorithm. Int. J. Comput. Intell. Syst. 17(1), 185. https://doi.org/10.1007/s44196-024-00591-9 (2024).
Google Scholar
Kaur, P., Verma, R. & Mahanti, N. C. Selection of vendor using analytical hierarchy process based on fuzzy preference programming. Opsearch 47(1), 16–34 (2010).
Google Scholar
Kaur, P. Selection of vendor based on intuitionistic fuzzy analytical hierarchy process. Adv. Oper. Res. 2014, 1–10. https://doi.org/10.1155/2014/987690 (2014).
Google Scholar
Hussain, A., Ullah, K., Yang, M.-S. & Pamucar, D. Aczel-Alsina aggregation operators on T-spherical fuzzy (TSF) information with application to TSF multi-attribute decision making. Ieee Access 10, 26011–26023 (2022).
Google Scholar
Wang, R., Wang, J., Gao, H. & Wei, G. Methods for MADM with picture fuzzy muirhead mean operators and their application for evaluating the financial investment risk. Symmetry 11(1), 6 (2018).
Google Scholar
Kaur, P., Dutta, V., Pradhan, B. L., Haldar, S. & Chauhan, S. A pythagorean fuzzy approach for sustainable supplier selection using TODIM. Math. Probl. Eng. 2021, 1–11. https://doi.org/10.1155/2021/4254894 (2021).
Google Scholar
P. Kaur and A. Priya, Selection of inventory policy under pythogrean fuzzy environment Sci. Technol. Asia 62–71 (2020).
M. R. Seikh and U. Mandal, Some picture fuzzy aggregation operators based on frank t-norm and t-conorm: application to MADM process Informatica 45(3):https://doi.org/10.31449/inf.v45i3.3025 (2021)
Hussain, A., Mahmood, T., Smarandache, F. & Ashraf, S. TOPSIS approach for MCGDM based on intuitionistic fuzzy rough Dombi aggregation operations. Comput. Appl. Math. 42(4), 176. https://doi.org/10.1007/s40314-023-02266-1 (2023).
Google Scholar
Abbas, F., Ali, J. & Mashwani, W. K. Partitioned Hamy mean aggregation for multi-criteria group decision-making in the MAIRCA framework with q-rung orthopair fuzzy 2-tuple linguistic information. Granul. Comput. 9(3), 62 (2024).
Google Scholar
Wang, H. Sustainable circular supplier selection in the power battery industry using a linguistic T-spherical fuzzy MAGDM model based on the improved ARAS method. Sustainability 14(13), 7816 (2022).
Google Scholar
Zavadskas, E. K., Turskis, Z., Antucheviciene, J. & Zakarevicius, A. Optimization of weighted aggregated sum product assessment. Elektron. Ir Elektrotechnika 122(6), 3–6 (2012).
Google Scholar
Rani, P., Mishra, A. R. & Pardasani, K. R. A novel WASPAS approach for multi-criteria physician selection problem with intuitionistic fuzzy type-2 sets. Soft Comput. 24(3), 2355–2367 (2020).
Google Scholar
Ayyildiz, E., Erdogan, M. & Taskin Gumus, A. A Pythagorean fuzzy number-based integration of AHP and WASPAS methods for refugee camp location selection problem: a real case study for Istanbul, Turkey. Neural Comput. Appl. 33(22), 15751–15768. https://doi.org/10.1007/s00521-021-06195-0 (2021).
Google Scholar
Senapati, T. & Chen, G. Picture fuzzy WASPAS technique and its application in multi-criteria decision-making. Soft Comput. 26(9), 4413–4421. https://doi.org/10.1007/s00500-022-06835-0 (2022).
Google Scholar
Albaity, M., Mahmood, T. & Ali, Z. Impact of machine learning and artificial intelligence in business based on intuitionistic fuzzy soft WASPAS method. Mathematics 11(6), 1453 (2023).
Google Scholar
Abbas, F., Ali, J., Mashwani, W. K., Gündüz, N. & Syam, M. I. q-Rung orthopair fuzzy 2-tuple linguistic WASPAS algorithm for patients’ prioritization based on prioritized Maclaurin symmetric mean aggregation operators. Sci. Rep. 14(1), 10659 (2024).
Google Scholar
Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007).
Google Scholar
Zhao, H., Xu, Z., Ni, M. & Liu, S. Generalized aggregation operators for intuitionistic fuzzy sets. Int. J. Intell. Syst. 25(1), 1–30. https://doi.org/10.1002/int.20386 (2010).
Google Scholar
Fahmi, A., Khan, A., Maqbool, Z. & Abdeljawad, T. Circular intuitionistic fuzzy Hamacher aggregation operators for multi-attribute decision-making. Sci. Rep. 15(1), 5618 (2025).
Google Scholar
Bozyigit, M. C., Olgun, M. & Ünver, M. Circular pythagorean fuzzy sets and applications to multi-criteria decision making. Informatica 34(4), 713–742. https://doi.org/10.15388/23-INFOR529 (2023).
Google Scholar
Mahmood, T. & Ali, Z. Multi-attribute decision-making methods based on Aczel-Alsina power aggregation operators for managing complex intuitionistic fuzzy sets. Comput. Appl. Math. 42(2), 87. https://doi.org/10.1007/s40314-023-02204-1 (2023).
Google Scholar
Hussain, A., Ullah, K., Al-Quran, A. & Garg, H. Some T-spherical fuzzy dombi hamy mean operators and their applications to multi-criteria group decision-making process. J. Intell. Fuzzy Syst. 45(6), 9621–9641 (2023).
Google Scholar
M. Riaz, K. Naeem, and D. Afzal, Pythagorean m-polar fuzzy soft sets with TOPSIS method for MCGDM Punjab Univ. J. Math. 52 (3) Accessed Feb 25 2025 Available http://journals.pu.edu.pk/journals/index.php/pujm/article/viewArticle/3469 (2020)
Hussain, A., Wang, H., Ullah, K. & Pamucar, D. Novel intuitionistic fuzzy Aczel Alsina Hamy mean operators and their applications in the assessment of construction material. Complex Intell. Syst. 10(1), 1061–1086. https://doi.org/10.1007/s40747-023-01116-1 (2024).
Google Scholar