Author: admin

  • New technology eliminates “forever chemicals” with record-breaking speed and efficiency

    New technology eliminates “forever chemicals” with record-breaking speed and efficiency

    A research team at Rice University, working with international collaborators, has created the first environmentally friendly technology that can quickly trap and break down toxic “forever chemicals” (PFAS) in water. The results, published…

    Continue Reading

  • Bezek, L. B. et al. Effect of part size, displacement rate, and aging on compressive properties of elastomeric parts of different unit cell topologies formed by vat photopolymerization additive manufacturing. Polymers 16, 3166 (2024).

    Google Scholar 

  • Yang, L. et al. Additive manufacturing of metal cellular structures: design and fabrication. Jom 67, 608–615 (2015).

    Google Scholar 

  • Lin, H. et al. 3d printing of porous ceramics for enhanced thermal insulation properties. Adv. Sci. 12, 2412554 (2025).

    Google Scholar 

  • Schaedler, T. A. et al. Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 16, 276–283 (2014).

    Google Scholar 

  • Schaedler, T. A. & Carter, W. B. Architected cellular materials. Annual Rev. Mater. Res. 46, 187–210 (2016).

    Google Scholar 

  • Boursier Niutta, C., Ciardiello, R. & Tridello, A. Experimental and numerical investigation of a lattice structure for energy absorption: application to the design of an automotive crash absorber. Polymers 14, 1116 (2022).

    Google Scholar 

  • Mohsenizadeh, M., Gasbarri, F., Munther, M., Beheshti, A. & Davami, K. Additively-manufactured lightweight metamaterials for energy absorption. Mater. Des. 139, 521–530 (2018).

    Google Scholar 

  • Uribe-Lam, E., Treviño-Quintanilla, C. D., Cuan-Urquizo, E. & Olvera-Silva, O. Use of additive manufacturing for the fabrication of cellular and lattice materials: a review. Mater. Manuf. Process. 36, 257–280 (2021).

    Google Scholar 

  • Mueller, J., Raney, J. R., Shea, K. & Lewis, J. A. Architected lattices with high stiffness and toughness via multicore-shell 3d printing. Adv.Mater. 30, 1705001 (2018).

    Google Scholar 

  • Lei, H. et al. Evaluation of compressive properties of slm-fabricated multi-layer lattice structures by experimental test and \(\mu\)-ct-based finite element analysis. Materi. Des. 169, 107685 (2019).

    Google Scholar 

  • Kumar, A., Collini, L., Daurel, A. & Jeng, J.-Y. Design and additive manufacturing of closed cells from supportless lattice structure. Additive Manuf. 33, 101168 (2020).

    Google Scholar 

  • Nakarmi, S. et al. The role of unit cell topology in modulating the compaction response of additively manufactured cellular materials using simulations and validation experiments. Model. Simul. Mater. Sci. Eng. 32, 055029 (2024).

    Google Scholar 

  • Nakarmi, S. et al. Mesoscale simulations and validation experiments of polymer foam compaction-volume density effects. Mater. Lett. 382, 137864 (2025).

    Google Scholar 

  • Xia, L. & Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in matlab. Struct. Multidisciplinary Optim. 52, 1229–1241 (2015).

    Google Scholar 

  • Radman, A., Huang, X. & Xie, Y. Topology optimization of functionally graded cellular materials. J. Mater. Sci. 48, 1503–1510 (2013).

    Google Scholar 

  • Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3d microarchitecture. Procd. National Acad. Sci. 111, 2453–2458 (2014).

    Google Scholar 

  • Nguyen, J., Park, S.-I. & Rosen, D. Heuristic optimization method for cellular structure design of light weight components. Int. J. Precision Eng. Manuf. 14, 1071–1078 (2013).

    Google Scholar 

  • Meier, T. et al. Obtaining auxetic and isotropic metamaterials in counterintuitive design spaces: an automated optimization approach and experimental characterization. npj Comput. Mater. 10, 3 (2024).

    Google Scholar 

  • Vangelatos, Z. et al. Strength through defects: A novel bayesian approach for the optimization of architected materials. Sci. Adv. 7, eabk2218 (2021).

    Google Scholar 

  • Ramesh, A. et al. Zero-shot text-to-image generation. In International conference on machine learning, 8821–8831 (Pmlr, 2021).

  • Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251, 3 (2022).

  • Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).

    Google Scholar 

  • Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).

    Google Scholar 

  • Zhavoronkov, A. et al. Deep learning enables rapid identification of potent ddr1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Google Scholar 

  • Liao, W., Lu, X., Fei, Y., Gu, Y. & Huang, Y. Generative ai design for building structures. Autom. Construct. 157, 105187 (2024).

    Google Scholar 

  • Kingma, D. P., Welling, M. et al. Auto-encoding variational bayes (2013).

  • Goodfellow, I. J. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014).

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

    Google Scholar 

  • Sohn, K., Lee, H. & Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 28 (2015).

  • Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).

  • Dhariwal, P. & Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021).

    Google Scholar 

  • Lee, D., Chen, W., Wang, L., Chan, Y.-C. & Chen, W. Data-driven design for metamaterials and multiscale systems: a review. Adv. Mater. 36, 2305254 (2024).

    Google Scholar 

  • Zheng, X., Zhang, X., Chen, T.-T. & Watanabe, I. Deep learning in mechanical metamaterials: from prediction and generation to inverse design. Adv. Mater. 35, 2302530 (2023).

    Google Scholar 

  • Wang, L. et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Methods App. Mech. Eng. 372, 113377 (2020).

    Google Scholar 

  • Zheng, L., Karapiperis, K., Kumar, S. & Kochmann, D. M. Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling. Nat. Commun. 14, 7563 (2023).

    Google Scholar 

  • Tian, J., Tang, K., Chen, X. & Wang, X. Machine learning-based prediction and inverse design of 2d metamaterial structures with tunable deformation-dependent poisson’s ratio. Nanoscale 14, 12677–12691 (2022).

    Google Scholar 

  • Zheng, X., Chen, T.-T., Guo, X., Samitsu, S. & Watanabe, I. Controllable inverse design of auxetic metamaterials using deep learning. Mater. Des. 211, 110178 (2021).

    Google Scholar 

  • Challapalli, A., Patel, D. & Li, G. Inverse machine learning framework for optimizing lightweight metamaterials. Materi. Des. 208, 109937 (2021).

    Google Scholar 

  • Vlassis, N. N. & Sun, W. Denoising diffusion algorithm for inverse design of microstructures with fine-tuned nonlinear material properties. Comput. Methods Appl. Mech. Eng. 413, 116126 (2023).

    Google Scholar 

  • Bastek, J.-H. & Kochmann, D. M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat. Mach. Intell. 5, 1466–1475 (2023).

    Google Scholar 

  • Meier, T. et al. Scalable phononic metamaterials: Tunable bandgap design and multi-scale experimental validation. Mater. Des. 252, 113778 (2025).

    Google Scholar 

  • Kumar, S., Tan, S., Zheng, L. & Kochmann, D. M. Inverse-designed spinodoid metamaterials. npj Comput. Mater. 6, 73 (2020).

    Google Scholar 

  • Nakarmi, S., Leiding, J. A., Lee, K.-S. & Daphalapurkar, N. P. Predicting non-linear stress-strain response of mesostructured cellular materials using supervised autoencoder. Comput. Methods Appl. Mech. Eng. 432, 117372 (2024).

    Google Scholar 

  • McNeel, R. et al. Grasshopper-algorithmic modeling for rhino. http://www.grasshopper3d.com (2013).

  • Dassault Systèmes. Abaqus Analysis User’s Manual, Version 2020 (2020).

  • Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940).

    Google Scholar 

  • Rivlin, R. Large elastic deformations of isotropic materials. i. fundamental concepts. Philosophical Trans. Royal Soc. London. Series A, Math. Phys. Sci. 240, 459–490 (1948).

    Google Scholar 

  • Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdisciplinary Rev. Comput. Statist. 2, 433–459 (2010).

    Google Scholar 

  • Yang, C., Kim, Y., Ryu, S. & Gu, G. X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020).

    Google Scholar 

  • Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Int. Conference Mach. Learn., 448–456 (pmlr, 2015).

  • Li, X., Chen, S., Hu, X. & Yang, J. Understanding the disharmony between dropout and batch normalization by variance shift. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2682–2690 (2019).

  • Kullback, S. & Leibler, R. A. On information and sufficiency. Annals Math. Statist. 22, 79–86 (1951).

    Google Scholar 

  • Higgins, I. et al. Early visual concept learning with unsupervised deep learning. arXiv preprint arXiv:1606.05579 (2016).

  • Fu, H. et al. Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019).

  • Smith, S. L., Kindermans, P.-J., Ying, C. & Le, Q. V. Don’t decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489 (2017).

  • Liu, Y., Neophytou, A., Sengupta, S. & Sommerlade, E. Relighting images in the wild with a self-supervised siamese auto-encoder. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 32–40 (2021).

  • Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    Google Scholar 

  • Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).

    Google Scholar 

  • Zhao, F., Huang, Q. & Gao, W. Image matching by normalized cross-correlation. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 2, II–II (IEEE, 2006).

Continue Reading

  • ‘Why our village nativity only has two wise men’

    ‘Why our village nativity only has two wise men’

    This year, people have been puzzled by the absence of a third wise man.

    “There’s been a lot of stuff on Facebook saying ‘where’s the third wise man gone?’ Well, there never was a third one,” she clarified.

    “There was this story going around…

    Continue Reading

  • Albanese announces bravery award for heroes of Bondi antisemitic attack

    Albanese announces bravery award for heroes of Bondi antisemitic attack

    NEWCASTLE, Australia — Australian Prime Minister Anthony Albanese announced plans Thursday for a national bravery award to recognize civilians and first responders who confronted “the worst of evil” during an antisemitic terror attack that…

    Continue Reading

  • Front-runner to be Bangladesh PM returns after 17 years in exile

    Front-runner to be Bangladesh PM returns after 17 years in exile

    Tarique Rahman, the front-runner to be the next prime minister of Bangladesh, has returned to the country after 17 years in exile ahead of landmark general elections.

    The 60-year-old is the figurehead of the influential Zia family and the son of…

    Continue Reading

  • Front-runner to be Bangladesh PM returns after 17 years in exile

    Front-runner to be Bangladesh PM returns after 17 years in exile

    Tarique Rahman, the front-runner to be the next prime minister of Bangladesh, has returned to the country after 17 years in exile ahead of landmark general elections.

    The 60-year-old is the figurehead of the influential Zia family and the son of…

    Continue Reading

  • Researchers develop experimental obesity drugs targeting energy production

    Researchers develop experimental obesity drugs targeting energy production

    New Delhi | Researchers have developed experimental drugs targeting mitochondria — the energy powerhouse of a cell — to work harder and burn more calories, which may make way for new treatments for obesity.

    The team, led by researchers from the…

    Continue Reading

  • Powerball's Christmas Eve drawing dangles a $1.82 billion Christmas miracle – Axios

    1. Powerball’s Christmas Eve drawing dangles a $1.82 billion Christmas miracle  Axios
    2. Powerball jackpot soars to $1.6 billion for Monday drawing  Powerball
    3. Powerball’s $1.7B jackpot could make Christmas unforgettable for a lucky winner  

    Continue Reading

  • Princess Kate calls for small acts of kindness in Christmas message

    Princess Kate calls for small acts of kindness in Christmas message

    Princess Kate calls for small acts of kindness in Christmas message

    Princess Kate has urged people to embrace Christmas through small gestures and…

    Continue Reading

  • Karachi Rs 3.8B Underpass Near Completion

    Karachi Rs 3.8B Underpass Near Completion

    Karachi’s Kareemabad underpass project, valued at Rs. 3.8 billion, is nearing completion, with around 85% of the construction work already done. The remaining work largely depends on the relocation of K-Electric utility lines from the site….

    Continue Reading