Samsung recently launched the One UI 8.5 beta program for the Galaxy S25 series in select markets. The company is also working on the firmware for several other devices, some of which may be added to the beta program…
In an…

Samsung recently launched the One UI 8.5 beta program for the Galaxy S25 series in select markets. The company is also working on the firmware for several other devices, some of which may be added to the beta program…
Pretty, I. A. & Sweet, D. A look at forensic dentistry—Part 1: the role of teeth in the determination of human identity. Br. Dent. J. 190, 359–366 (2001).
Rothwell, B. R. Principles of…
Tedjopurnomo, D. A., Bao, Z., Zheng, B., Choudhury, F. M. & Qin, A. K. A survey on modern deep neural network for traffic prediction: Trends, methods and challenges. IEEE Trans. Knowl. Data Eng. 34, 1544–1561. https://doi.org/10.1109/TKDE.2020.3001195 (2022).
Isufi, E., Loukas, A., Simonetto, A. & Leus, G. Autoregressive moving average graph filtering. IEEE Trans. Signal Process. 65, 274–288. https://doi.org/10.1109/TSP.2016.2614793 (2017).
Lu, Z., Zhou, C., Wu, J., Jiang, H. & Cui, S. Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs. KSII Trans. Internet Inf. Syst. 10, 136–151. https://doi.org/10.3837/tiis.2016.01.008 (2016).
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. & Vapnik, V. Support vector regression machines. In Proceedings of the 10th International Conference on Neural Information Processing Systems, NIPS’96, 155–161 (MIT Press, 1996).
Yu, B., Yin, H. & Zhu, Z. Spatio-temporal graph convolutional neural network: A deep learning framework for traffic forecasting. CoRRabs/1709.04875 arXiv:1709.04875 (2017).
Zheng, C., Fan, X., Wang, C. & Qi, J. Gman: A graph multi-attention network for traffic prediction arXiv:1911.08415 (2019).
Cui, Z., Chen, W. & Chen, Y. Multi-scale convolutional neural networks for time series classification arXiv:1603.06995 (2016).
Li, Y., Yu, R., Shahabi, C. & Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting arXiv:1707.01926 (2018).
Zhao, L. et al. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21, 3848–3858. https://doi.org/10.1109/TITS.2019.2935152 (2020).
Guo, S., Lin, Y., Feng, N., Song, C. & Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 33, 922–929 (2019).
Wang, X. et al. Traffic flow prediction via spatial temporal graph neural network. In Proceedings of The Web Conference 2020, WWW ’20, 1082–1092, https://doi.org/10.1145/3366423.3380186 (Association for Computing Machinery, 2020).
Luo, R., Song, Y., Huang, L., Zhang, Y. & Su, R. Stgin: A spatial temporal graph-informer network for long sequence traffic speed forecasting arXiv:2210.01799 (2022).
Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. Graph wavenet for deep spatial-temporal graph modeling arXiv:1906.00121 (2019).
Liu, Z., Shojaee, P. & Reddy, C. K. Graph-based multi-ode neural networks for spatio-temporal traffic forecasting arXiv:2305.18687 (2023).
Ghosh, B., Basu, B. & O’Mahony, M. Bayesian time-series model for short-term traffic flow forecasting. J. Transp. Eng. 133, 180–189 (2007).
Xie, Y., Zhang, Y. & Ye, Z. Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition. Computer-Aided Civil Infrastruct. Eng. 22, 326–334 (2007).
Fu, H., Ma, H., Liu, Y. & Lu, D. A vehicle classification system based on hierarchical multi-svms in crowded traffic scenes. Neurocomputing 211, 182–190 (2016).
May, M., Hecker, D., Körner, C., Scheider, S. & Schulz, D. A vector-geometry based spatial knn-algorithm for traffic frequency predictions. In 2008 IEEE International Conference on Data Mining Workshops, 442–447, https://doi.org/10.1109/ICDMW.2008.35 (2008).
Huang, W., Song, G., Hong, H. & Xie, K. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15, 2191–2201. https://doi.org/10.1109/TITS.2014.2311123 (2014).
Lv, Y., Duan, Y., Kang, W., Li, Z. & Wang, F.-Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 16, 865–873. https://doi.org/10.1109/TITS.2014.2345663 (2015).
Fu, R., Zhang, Z. & Li, L. Using lstm and gru neural network methods for traffic flow prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), 324–328, https://doi.org/10.1109/YAC.2016.7804912 (2016).
Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks arXiv:1409.3215 (2014).
Wang, Y., Guo, Y., Wei, Z., Huang, Y. & Liu, X. Traffic flow prediction based on deep neural networks. In 2019 International Conference on Data Mining Workshops (ICDMW), 210–215, https://doi.org/10.1109/ICDMW.2019.00040 (2019).
Wu, Y. & Tan, H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework arXiv:1612.01022 (2016).
Yu, H., Wu, Z., Wang, S., Wang, Y. & Ma, X. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks arXiv:1705.02699 (2017).
Chen, W. & Shi, K. Multi-scale attention convolutional neural network for time series classification. Neural Netw. 136, 126–140. https://doi.org/10.1016/j.neunet.2021.01.001 (2021).
Chen, Z., Ma, Q. & Lin, Z. Time-aware multi-scale rnns for time series modeling. In IJCAI, 2285–2291 (2021).
Bai, L., Yao, L., Li, C., Wang, X. & Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting arXiv:2007.02842 (2020).
Li, M. et al. Traffic flow prediction with vehicle trajectories. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 35, 294–302 (2021).
Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121 (2019).
Peng, H. et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578, 401–416 (2021).
Wang, Y., Fang, S., Zhang, C., Xiang, S. & Pan, C. Tvgcn: Time-variant graph convolutional network for traffic forecasting. Neurocomputing 471, 118–129 (2022).
Li, C., Bai, L., Liu, W., Yao, L. & Waller, S. T. A multi-task memory network with knowledge adaptation for multimodal demand forecasting. Transp. Res. Part C Emerg. Technol. 131, 103352 (2021).
Wang, P., Zhang, T., Zheng, Y. & Hu, T. A multi-view bidirectional spatiotemporal graph network for urban traffic flow imputation. Int. J. Geogr. Inf. Sci. 36, 1231–1257 (2022).
Huang, X., Ye, Y., Yang, X. & Xiong, L. Multi-view dynamic graph convolution neural network for traffic flow prediction. Expert Syst. Appl. 222, 119779 (2023).
Vaswani, A. et al. Attention is all you need. arXiv:1706.03762 (2023).
Huang, J., Luo, K., Cao, L., Wen, Y. & Zhong, S. Learning multiaspect traffic couplings by multirelational graph attention networks for traffic prediction. IEEE Trans. Intell. Transp. Syst. 23, 20681–20695. https://doi.org/10.1109/TITS.2022.3173689 (2022).
Feng, A. & Tassiulas, L. Adaptive graph spatial-temporal transformer network for traffic flow forecasting. arXiv:2207.05064 (2022).
Jiang, J., Han, C., Zhao, W. X. & Wang, J. Pdformer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction. arXiv:2301.07945 (2024).
Li, Y. et al. Ddgformer: Direction- and distance-aware graph transformer for traffic flow prediction. Knowl.-Based Syst. 302, 112381 (2024).
Berndt, D. J. & Clifford, J. Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94, 359–370 (AAAI Press, 1994).
Hamilton, J. D. Time Series Analysis (Princeton University Press, 1994).
Song, C., Lin, Y., Guo, S. & Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, 914–921 (2020).
Wu, Z. et al. Connecting the dots: Multivariate time series forecasting with graph neural networks arXiv:2005.11650 (2020).
Li, M. & Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 4189–4196 (2021).
Fang, Z., Long, Q., Song, G. & Xie, K. Spatial-temporal graph ode networks for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & amp; Data Mining, 364–373 (ACM, 2021).
Lan, S. et al. Dstagnn: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research (eds Chaudhuri, K. et al.) 11906–11917 (PMLR, 2022).
Xu, Y. et al. Generic dynamic graph convolutional network for traffic flow forecasting. Inf. Fusion 100, 101946 (2023).
Liu, A. & Zhang, Y. Spatial-temporal dynamic graph convolutional network with interactive learning for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25, 7645–7660. https://doi.org/10.1109/TITS.2024.3362145 (2024).
Guo, S., Lin, Y., Wan, H., Li, X. & Cong, G. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34, 5415–5428. https://doi.org/10.1109/TKDE.2021.3056502 (2022).
Shao, Z., Zhang, Z., Wang, F., Wei, W. & Xu, Y. Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. arXiv:2208.05233 (2022).
Liu, H. et al. Staeformer: Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting. arXiv:2308.10425 (2023).
Dash, S., Satpathy, M. P., Routara, B. C., Pati, P. R. & Gantayat, S. Enhancing mechanical and tribological performance of hybrid composites: an experimental study utilizing response surface methodology and firefly algorithm. Polym. Compos. 45, 15924–15940. https://doi.org/10.1002/pc.28880 (2024).
Sahu, S. K. & Sreekanth, P. S. R. Evaluation of tensile properties of spherical shaped SiC inclusions inside recycled HDPE matrix using FEM based representative volume element approach. Heliyon 9, e14034. https://doi.org/10.1016/j.heliyon.2023.e14034 (2023).
Sahu, S. K. & Sreekanth, P. S. R. Artificial neural network for prediction of mechanical properties of HDPE based nanodiamond nanocomposite. Polym. Korea. 46, 614–620. https://doi.org/10.7317/pk.2022.46.5.614 (2022).
Gowrishankar, M. C., Shettar, M., Somdee, P., Rangaswamy, N. & Chate, G. R. A review on mechanical, water-soaking, thermal, and wear properties of nanoclay-polyester nanocomposites. Discov. Mater. 5. https://doi.org/10.1007/s43939-025-00304-9 (2025).
Awasthi, T., Bharti, M. S., Agrawal, A. & Gupta, G. Experimental study of physical, mechanical and tribological behaviour of polyester/kota stone dust composite. Eng. Res. Express. 6, 045571. https://doi.org/10.1088/2631-8695/ad9b6e (2024).
El-meniawi, M. A. H., Mahmoud, K. R. & Megahed, M. Positron annihilation spectroscopy and mechanical properties studies for epoxy matrices reinforced with different nanoparticles. J. Polym. Res. 23, 181. https://doi.org/10.1007/s10965-016-1074-6 (2016).
Dholi, A., Yadav, S., Agrawal, A. & Gupta, G. Development of epoxy/red stone dust composites and their characterization for light duty structural and automotive applications. J. Adhes. Sci. Technol. 39, 1737–1756. https://doi.org/10.1080/01694243.2025.2464879 (2025).
Mohan, T. P. & Kanny, K. Tribological studies of nanoclay filled epoxy hybrid laminates. Tribol. Trans. 60, 681–692. https://doi.org/10.1080/10402004.2016.1204039 (2017).
Xu, Z., Kong, W., Zhou, M. & Peng, M. Effect of surface modification of montmorillonite on the properties of rigid polyurethane foam composites. Chin. J. Polym. Sci. 28, 615–624. https://doi.org/10.1007/s10118-010-9111-0 (2010).
Sharma, B., Mahajan, S., Chhibber, R. & Mehta, R. Glass fiber reinforced Polymer-Clay nanocomposites: Processing, structure and hygrothermal effects on mechanical properties. Procedia Chem. 4, 39–46. https://doi.org/10.1016/j.proche.2012.06.006 (2012).
Megahed, A. A. E. W. & Megahed, M. Fabrication and characterization of functionally graded nanoclay/glass fiber/epoxy hybrid nanocomposite laminates. Iran. Polym. J. 26, 673–680. https://doi.org/10.1007/s13726-017-0552-y (2017).
Mahesh, K. V. et al. The influence of montmorillonite on mechanical, thermal and fire retardation properties of vinylester/glass composites. J. Compos. Mater. 47, 2163–2178. https://doi.org/10.1177/0021998312454902 (2013).
Nazir, M. S. et al. Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites 35–55. https://doi.org/10.1007/978-981-10-1953-1_2 (2016).
Wang, M., Fan, X., Thitsartarn, W. & He, C. Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polym. (Guildf). 58, 43–52. https://doi.org/10.1016/j.polymer.2014.12.042 (2015).
Pati, P. R. Prediction and wear performance of red brick dust filled glass–epoxy composites using neural networks. Int. J. Plast. Technol. 23, 253–260. https://doi.org/10.1007/s12588-019-09257-0 (2019).
Mohamed, Y. S., El-Gamal, H. & Zaghloul, M. M. Y. Micro-hardness behavior of fiber reinforced thermosetting composites embedded with cellulose nanocrystals. Alexandria Eng. J. 57, 4113–4119. https://doi.org/10.1016/j.aej.2018.10.012 (2018).
Mrah, L. & Meghabar, R. Dispersion and improvement of organoclays in nanocomposites based on poly(propylene oxide). J. Thermoplast. Compos. Mater. 35, 1889–1902. https://doi.org/10.1177/0892705720939172 (2022).
Rafiq, A. & Merah, N. Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures. J. Compos. Mater. 53, 143–154. https://doi.org/10.1177/0021998318781220 (2019).
Yi, H., Hu, M., Yao, D., Lin, H. & Zheng, B. Tribological and thermomechanical properties of epoxy-matrix nanocomposites containing montmorillonite nanoclay intercalated with polybutadiene-based quaternary ammonium salt. Plast., Rubber Compos. 49, 389–399. https://doi.org/10.1080/14658011.2020.1776921 (2020).
Reddy Paluvai, N., Mohanty, S. & Nayak, S. K. Effect of cloisite 30B clay and Sisal fiber on dynamic mechanical and fracture behavior of unsaturated polyester toughened epoxy network. Polym. Compos. 37, 2832–2846. https://doi.org/10.1002/pc.23480 (2016).
Mohammed, A. S., Ali, A. & bin, Nesar, M. Evaluation of tribological properties of organoclay reinforced UHMWPE nanocomposites. J. Tribol. 139. https://doi.org/10.1115/1.4033188 (2017).
Dorigato, A., Morandi, S. & Pegoretti, A. Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. J. Compos. Mater. 46, 1439–1451. https://doi.org/10.1177/0021998311420311 (2012).
Dos Santos, E. P., Fook, M. V. L., Malta, O. M. L., De Lima Silva, S. M. & Leite, I. F. Role of surfactants in the properties of Poly(Ethylene Terephthalate)/Purified clay nanocomposites. Materials 11, 1397. https://doi.org/10.3390/ma11081397 (2018).
Ozsoy, I., Mimaroglu, A. & Unal, H. Influence of micro- and nanofiller contents on friction and wear behavior of epoxy composites. Sci. Eng. Compos. Mater. 24, 485–494. https://doi.org/10.1515/secm-2014-0262 (2017).
Moosa, M. H. et al. Structural and tribological characterization of carbon and glass fabrics reinforced epoxy for bushing applications safety. Polym. (Basel) 15. https://doi.org/10.3390/polym15092064 (2023).
Murugan, A. et al. Optimization of tribo-mechanical properties of kenaf/jute-SiC hybrid composites using integrated grey-fuzzy approach. Sci. Rep. 15. https://doi.org/10.1038/s41598-025-11340-z (2025).
Ibrahim, M. A., Çamur, H., Savaş, M. A. & Abba, S. I. Optimization and prediction of tribological behaviour of filled polytetrafluoroethylene composites using Taguchi Deng and hybrid support vector regression models. Sci. Rep. 12. https://doi.org/10.1038/s41598-022-14629-5 (2022).
Shettar, M., Bhat, A. & Katagi, N. N. Estimation of mass loss under wear test of nanoclay-epoxy nanocomposite using response surface methodology and artificial neural networks. Sci. Rep. 15. https://doi.org/10.1038/s41598-025-05263-y (2025).
Shettar, M., Kowshik, C. S. S., Manjunath, M. & Hiremath, P. Experimental investigation on mechanical and wear properties of nanoclay-epoxy composites. J. Mater. Res. Technol. 9, 9108–9116. https://doi.org/10.1016/j.jmrt.2020.06.058 (2020).
Jagadeesan, N. et al. Response surface methodology based optimization of test parameter in glass fiber reinforced polyamide 66 for dry sliding. Tribol. Perform. Mater. 15. https://doi.org/10.3390/ma15196520 (2022).
Hiremath, P. et al. Comprehensive experimental optimization and Image-Driven machine learning prediction of tribological performance in MWCNT-reinforced bio-based epoxy nanocomposites. J. Compos. Sci. 9, 385. https://doi.org/10.3390/jcs9080385 (2025).
Hiremath, P., Kini, U. A., Shettar, M., Sharma, S. & P K J Investigation on tensile properties and analysis of wear property of glass fiber-epoxy-nanoclay ternary nanocomposite using response surface methodology. Cogent Eng. 8. https://doi.org/10.1080/23311916.2021.1877869 (2021).
Hiremath, P., Shivamurthy, R. C., Kamath, G. B. & Naik, N. Comprehensive analysis of wear, friction, and thermal resistance in PVDF/Nanoclay composites using Taguchi methodology for enhanced tribological performance. J. Compos. Sci. 9. https://doi.org/10.3390/jcs9010037 (2025).
Prajapati, P. K., Kumar, S. & Singh, K. K. Taguchi approach for comparative optimization of tribological behavior of glass fabric reinforced epoxy composite with and without graphene-nano platelets filler. Mater. Today Proc. 72, 1605–1612. https://doi.org/10.1016/j.matpr.2022.09.412 (2023).
Manoharan, S., Vijay, R., Singaravelu, D. L., Krishnaraj, S. & Suresha, B. Tribological characterization of recycled basalt-aramid fiber reinforced hybrid friction composites using grey-based Taguchi approach. Mater. Res. Express 6. https://doi.org/10.1088/2053-1591/ab07ce (2019).
Boobalan, V. & Sathish, T. Optimization of tribological properties of natural basalt/synthetic E-glass fiber/polymer nanocomposites modified with MWCNTs + SiO2 using box Behnken design (RSM). Interactions 245. https://doi.org/10.1007/s10751-024-02014-9 (2024).
Agrawal, S., Singh, N., Singh, Y. & Upadhyay, R. Tribological study and parameters optimisation of CNT added glass fibre reinforced polymer composite sliding under inert environment. Adv. Mater. Process. Technol. 9, 1283–1298. https://doi.org/10.1080/2374068X.2022.2113900 (2022).
Şahin, Y. & Şahin, F. Effects of process factors on tribological behaviour of epoxy composites including Al2O3 nano particles: a comparative study on multi-regression analysis and artificial neural network. Adv. Mater. Process. Technol. 8, 2007–2021. https://doi.org/10.1080/2374068X.2021.1878712 (2022).
Tripathi, V. K. & Ambekar, S. Optimization and analysis of wear rate of CFRP-NanoZno/Nanoclay hybrid composites using RSM. J. Bio Tribocorros. 5. https://doi.org/10.1007/s40735-019-0284-y (2019).
Chen, Z. et al. Enhanced mechanical and tribological properties of epoxy composites reinforced by novel hyperbranched polysiloxane functionalized graphene/MXene hybrid. Chem. Eng. J. 466. https://doi.org/10.1016/j.cej.2023.143086 (2023).
Ilyin, S. O. & Kotomin, S. V. Effect of nanoparticles and their anisometry on adhesion and strength in hybrid carbon-fiber-reinforced epoxy nanocomposites. J. Compos. Sci. 7. https://doi.org/10.3390/jcs7040147 (2023).
Purohit, A. et al. Mechanical and tribo-performance analysis of LD sludge filled wood Apple dust-epoxy composites using response surface methodology. Interactions 245, 131. https://doi.org/10.1007/s10751-024-01978-y (2024).
Kumar, S. S., Shyamala, P., Pati, P. R. & Gandla, P. K. Wear and frictional performance of epoxy composites reinforced with natural waste fibers and fillers for engineering applications. Fibers Polym. 25, 1429–1442. https://doi.org/10.1007/s12221-024-00519-2 (2024).
Puttaswamygowda, P. H., Sharma, S., Ullal, A. K. & Shettar, M. Synergistic enhancement of the mechanical properties of epoxy-based coir fiber composites through alkaline treatment and nanoclay reinforcement. J. Compos. Sci. 8. https://doi.org/10.3390/jcs8020066 (2024).
Zhou, S. et al. Facile Preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites. Mater. Chem. Phys. 217, 315–322. https://doi.org/10.1016/j.matchemphys.2018.06.080 (2018).
Liu, C. et al. Highly exfoliated epoxy/clay nanocomposites filled with novel cationic fluorinated polyacrylate modified montmorillonite: morphology and mechanical properties. Polym. Compos. 40, 4266–4280. https://doi.org/10.1002/pc.25288 (2019).
Sanaka, R. et al. A review of the current state of research and future prospectives on Stimulus-Responsive shape memory polymer composite and its blends. J. Compos. Sci. 8, 324. https://doi.org/10.3390/jcs8080324 (2024).
Shivamurthy B. & Siddaramaiah, P. M. S. Influence of SiO2 Fillers on sliding wear resistance and mechanical properties of compression moulded glass epoxy composites. J. Miner. Mater. Charact. Eng. 08, 513–530 (2009).
Basavarajappa, S., Ellangovan, S. & Arun, K. V. Studies on dry sliding wear behaviour of graphite filled glass–epoxy composites. Mater. Des. 30, 2670–2675. https://doi.org/10.1016/j.matdes.2008.10.013 (2009).
Kumar, N. et al. Tribological performance and microstructural insights of epoxy-based GFRP nanocomposites reinforced with ceramic nanoclays for wear-resistant applications. J. Manuf. Process. 151, 460–475. https://doi.org/10.1016/j.jmapro.2025.07.045 (2025).
Kumar, S., Singh, K. K. & Kumar, S. Tribological Behaviour of Glass/Epoxy Laminated Composite Reinforced with Graphene and MWCNT (2019).
Vinayagamoorthy, R. Friction and wear characteristics of fibre-reinforced plastic composites. J. Thermoplast. Compos. Mater. 33, 828–850. https://doi.org/10.1177/0892705718815529 (2020).
Dhar Badgayan, N., Kumar Sahu, S., Samanta, S. & Rama Sreekanth, P. S. Assessment of bulk mechanical properties of HDPE hybrid composite filled with 1D/2D nanofiller system. Mater. Sci. Forum. 917, 12–16 (2018).
Sanaka, R. & Sahu, S. K. Experimental investigation into mechanical, thermal, and shape memory behavior of thermoresponsive PU/MXene shape memory polymer nanocomposite. Heliyon 10, e24014. https://doi.org/10.1016/j.heliyon.2024.e24014 (2024).
Talib, A. A. A., Jumahat, A., Jawaid, M., Sapiai, N. & Leao, A. L. Effect of wear conditions, parameters and sliding motions on tribological characteristics of basalt and glass fibre reinforced epoxy composites. Materials 14, 1–18. https://doi.org/10.3390/ma14030701 (2021).
Kausar, A., Ahmad, I., Maaza, M. & Eisa, M. H. State-of-the-Art nanoclay reinforcement in green polymeric nanocomposite: from design to new opportunities. Minerals 12. https://doi.org/10.3390/min12121495 (2022).
Jawahar, P., Gnanamoorthy, R. & Balasubramanian, M. Tribological behaviour of clay – thermoset polyester nanocomposites. Wear 261, 835–840. https://doi.org/10.1016/j.wear.2006.01.010 (2006).
Gbadeyan, O. J., Mohan, T. P. & Kanny, K. Effect of loading nano-clay on banana fibers infused epoxy composite wear rate thermal property and water absorption properties. Mater. Today Proc. 87, 252–256. https://doi.org/10.1016/j.matpr.2023.05.352 (2023).
Rashmi, Renukappa, N. M., Suresha, B., Devarajaiah, R. M. & Shivakumar, K. N. Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using taguchi’s techniques. Mater. Des. 32, 4528–4536. https://doi.org/10.1016/j.matdes.2011.03.028 (2011).
Preethi, V., Kavimani, V. & Gopal, P. M. Multi-objective optimization of wear and friction behavior of hybrid magnesium-graphene-silicon nitride composite under dry sliding conditions. Proc. Inst. Mech. Eng.. https://doi.org/10.1177/13506501241313079 (2025).
Senthil Kumar, M. S., Mohana Sundara Raju, N., Sampath, P. S. & Vivek, U. Tribological analysis of nano clay/epoxy/glass fiber by using taguchi’s technique. Mater. Des. 70, 1–9. https://doi.org/10.1016/j.matdes.2014.12.033 (2015).
Jeyakumar, R., Sampath, P. S., Ramamoorthi, R. & Ramakrishnan, T. Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. Int. J. Adv. Manuf. Technol. 93, 527–535. https://doi.org/10.1007/s00170-017-0565-x (2017).
Srinivasa Perumal, K. P., Selvarajan, L., Mathan Kumar, P. & Shriguppikar, S. Enhancing mechanical and morphological properties of glass fiber reinforced epoxy polymer composites through rutile nanoparticle incorporation. Progress Additive Manuf. 10, 831–848. https://doi.org/10.1007/s40964-024-00675-0 (2025).
Tian, J., Qi, X., Li, C. & Xian, G. Friction behaviors and wear mechanisms of multi-filler reinforced epoxy composites under dry and wet conditions: effects of loads, sliding speeds, temperatures, water lubrication. Tribol. Int. 179. https://doi.org/10.1016/j.triboint.2022.108148 (2023).

Take the Billboard Hot 100, week after week, from 1973 right up to 2023. That’s more than 20,000 hit songs – an unruly chorus that, taken together, doubles as a cultural diary.
When researchers ran those lyrics through language tools that…

Request follows Islamabad declaring a public holiday on Dec 26 ahead of UAE President’s visit
A security guard standing outside Election Commission of Pakistan in Islamabad on September 21, 2023. Photo: AFP