Author: admin

Continue Reading

  • Statement on Israeli settlement expansion in the West Bank

    We, the States of Belgium, Canada, Denmark, France, Italy, Iceland, Ireland, Japan, Malta, the Netherlands, Norway, Spain, the United Kingdom and Germany condemn the approval by the Israeli security cabinet of 19 new settlements in the occupied…

    Continue Reading

  • Morgan Gaerte, All-ACC First Teamer, Signs with Kentucky Volleyball – UK Athletics

    Morgan Gaerte, All-ACC First Teamer, Signs with Kentucky Volleyball – UK Athletics

    LEXINGTON, Ky. – The Kentucky Volleyball team announced the signing of outside hitter Morgan Gaerte on Wednesday afternoon, who joins the Wildcats with two years of eligibility remaining on her clock.

    Gaerte comes to Lexington after…

    Continue Reading

  • The 10 best folk albums of 2025 | Folk music

    The 10 best folk albums of 2025 | Folk music

    10. Spafford Campbell – Tomorrow Held

    Inspired by Talk Talk’s Spirit of Eden and the quivering soundscapes of early Bon Iver, Tomorrow Held is the beautiful second album by fiddler Owen Spafford and guitarist Louis Campbell, their first on…

    Continue Reading

  • Rental Family offers connection in an increasingly polarised world

    Rental Family offers connection in an increasingly polarised world

    Rental Family, the latest film from director Hikari (Beef), is about the most persuasive argument for the need for human interaction in a society awash with artificial (and sometimes malicious) imitators.

    So, it tracks that the project started…

    Continue Reading

  • A market-based insurance approach aligns environmental and economic outcomes in maize nitrogen management

  • United States Department of Agriculture, National Agricultural Statistics Service. Quick stats: NASS statistical data. https://quickstats.nass.usda.gov/ (Accessed 16 October 2024) (2023).

  • Cassman, K. G. & Dobermann, A. Nitrogen and the future of agriculture: 20 years on: this article belongs to Ambio’s 50th anniversary collection. theme: solutions-oriented research. Ambio 51, 17–24 (2022).

    Google Scholar 

  • Donner, S. & Kucharik, C. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl. Acad. Sci. USA 105, 4513–4518 (2008).

    Google Scholar 

  • Ribaudo, M. Reducing agriculture’s nitrogen footprint: are new policy approaches needed?. Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America. Technical Report, 34–39 (2011).

  • Greer, K. D. & Pittelkow, C. M. Linking nitrogen losses with crop productivity in maize agroecosystems. Front. Sustain. Food Syst. 2, 29 (2018).

    Google Scholar 

  • Li, A. et al. A case study of environmental benefits of sensor-based nitrogen application in corn. J. Environ. Qual. 45, 675–683 (2016).

    Google Scholar 

  • Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).

    Google Scholar 

  • Kim, S. & Dale, B. E. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environ. Sci. Technol. 42, 6028–6033 (2008).

    Google Scholar 

  • Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Google Scholar 

  • Zhang, X. et al. Quantifying nitrous oxide fluxes on multiple spatial scales in the Upper Midwest, USA. Int. J. Biometeorol. 59, 299–310 (2014).

    Google Scholar 

  • Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).

    Google Scholar 

  • Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J. & Hoben, J. P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strateg. Glob. change 15, 185–204 (2010).

    Google Scholar 

  • Robertson, G. P. et al. Nitrogen–climate interactions in U.S. agriculture. Biogeochemistry 114, 41–70 (2013).

    Google Scholar 

  • Davidson, E. A., Suddick, E. C., Rice, C. W. & Prokopy, L. S. More food, low pollution (mo fo lo po): a grand challenge for the 21st century. J. Environ. Qual. 44, 305–311 (2015).

    Google Scholar 

  • Khanna, M., Gramig, B. M., DeLucia, E. H., Cai, X. & Kumar, P. Harnessing emerging technologies to reduce Gulf hypoxia. Nat. Sustain. 2, 889–891 (2019).

  • Kanter, D. R., Del Grosso, S., Scheer, C., Pelster, D. E. & Galloway, J. N. Why future nitrogen research needs the social sciences. Curr. Opin. Environ. Sustain. 47, 54–60 (2020).

    Google Scholar 

  • Zhang, X. et al. Nitrogen management during decarbonization. Nat. Rev. Earth Environ. 5, 717–731 (2024).

  • Heady, E. O., Pesek, J. T. & Brown, W. G. Crop response surfaces and economic optima in fertilizer use. Iowa State Coll. J. Sci. 29, 653–665 (1955).

    Google Scholar 

  • Cerrato, M. & Blackmer, A. Comparison of models for describing; corn yield response to nitrogen fertilizer. Agron. J. 82, 138–143 (1990).

    Google Scholar 

  • Bullock, D. G. & Bullock, D. S. Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison. Agron. J. 86, 191–195 (1994).

    Google Scholar 

  • McSwiney, C. P. & Robertson, G. P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob. Change Biol. 11, 1712–1719 (2005).

    Google Scholar 

  • Hoben, J., Gehl, R., Millar, N., Grace, P. & Robertson, G. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Change Biol. 17, 1140–1152 (2011).

    Google Scholar 

  • Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Environ. Qual. 44, 312–324 (2015).

    Google Scholar 

  • Mandrini, G., Pittelkow, C. M., Archontoulis, S. V., Mieno, T. & Martin, N. F. Understanding differences between static and dynamic nitrogen fertilizer tools using simulation modeling. Agric. Syst. 194, 103275 (2021).

    Google Scholar 

  • Banger, K., Nasielski, J., Janovicek, K., Sulik, J. & Deen, B. Potential farm-level economic impact of incorporating environmental costs into nitrogen decision making: a case study in Canadian corn production. Front. Sustain. Food Syst. 4, 96 (2020).

  • Correndo, A. A. et al. Unraveling uncertainty drivers of the maize yield response to nitrogen: a Bayesian and machine learning approach. Agric. For. Meteorol. 311, 108668 (2021).

    Google Scholar 

  • Morris, T. F. et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 110, 1–37 (2018).

    Google Scholar 

  • Ransom, C. J. et al. Corn nitrogen rate recommendation tools’ performance across eight US Midwest corn belt states. Agron. J. 112, 470–492 (2020).

    Google Scholar 

  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Google Scholar 

  • Chai, Y., Pannell, D. J. & Pardey, P. G. Nudging farmers to reduce water pollution from nitrogen fertilizer. Food Policy 120, 102525 (2023).

    Google Scholar 

  • Houser, M. Farmer motivations for excess nitrogen use in the US Corn Belt. Case Stud. Environ. 6, 1688823 (2022).

    Google Scholar 

  • Sellars, S. C., Schnitkey, G. D. & Gentry, L. F. Do Illinois farmers follow university-based nitrogen recommendations? In Proc. 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304617. https://ageconsearch.umn.edu/record/304617?ln=en&v=pdf (Agricultural and Applied Economics Association, 2020).

  • Sheriff, G. Efficient waste? Why farmers over-apply nutrients and the implications for policy design. Rev. Agric. Econ. 27, 542–557 (2005).

    Google Scholar 

  • Stuart, D., Schewe, R. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: understanding farmer decision-making and potential barriers to change in the U.S. Land Use Policy 36, 210–218 (2014).

    Google Scholar 

  • Osmond, D. L., Hoag, D. L., Luloff, A. E., Meals, D. W. & Neas, K. Farmers’ use of nutrient management: lessons from watershed case studies. J. Environ. Qual. 44, 382–390 (2015).

    Google Scholar 

  • Rajsic, P., Weersink, A. & Gandorfer, M. Risk and nitrogen application levels. Can. J. Agric. Econ./Rev. can.’agroecon. 57, 223–239 (2009).

    Google Scholar 

  • Mitchell, P. D. Nutrient best management practice insurance and farmer perceptions of adoption risk. J. Agric. Appl. Econ. 36, 657–673 (2004).

    Google Scholar 

  • Pannell, D. J. Economic perspectives on nitrogen in farming systems: managing trade-offs between production, risk and the environment. Soil Res. 55, 473–478 (2017).

    Google Scholar 

  • Tevenart, C. & Brunette, M. Role of farmers’ risk and ambiguity preferences on fertilization decisions: an experiment. Sustainability 13, 9802 (2021).

    Google Scholar 

  • Stuart, D., Denny, R. C., Houser, M., Reimer, A. P. & Marquart-Pyatt, S. Farmer selection of sources of information for nitrogen management in the US Midwest: implications for environmental programs. Land Use Policy 70, 289–297 (2018).

    Google Scholar 

  • Mitchell, P. D. & Hennessy, D. A. Factors determining best management practice adoption incentives and the impact of green insurance. In Risk management and the environment: Agriculture in perspective 52–66 (Dordrecht: Springer Netherlands, 2003).

  • Coble, K. H., Hanson, T., Miller, J. C. & Shaik, S. Agricultural insurance as an environmental policy tool. J. Agric. Appl. Econ. 35, 391–405 (2003).

    Google Scholar 

  • Metcalfe, T., Bosch, D. J., Pease, J. W., Alley, M. M. & Phillips, S. B. Yield reserve program costs in the Virginia Coastal Plain. Agric. Resour. Econ. Rev. 36, 197–212 (2007).

    Google Scholar 

  • Harris, L. M. & Swinton, S. M. Using BMP insurance to improve farm management. (Michigan State University, 2012).

  • Thorburn, P. J. et al. Innovative economic levers: a system for underwriting risk of practice change in cane-farming. (Reef and Rainforest Research Centre, 2020).

  • McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).

    Google Scholar 

  • Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Google Scholar 

  • Gray Betts, C., Hicks, D., Reader, M. & Wilson, P. Nitrogen balance is a predictor of farm business performance in the English Farm Business Survey. Front. Sustain. Food Syst. 7, 1106196 (2023).

    Google Scholar 

  • Paut, R. et al. On-farm assessment of an innovative dynamic fertilization method to improve nitrogen recovery in winter wheat. Nutr. Cycl. Agroecosyst. 129, 475–490 (2024).

    Google Scholar 

  • Shahadha, S. S., Wendroth, O. & Ding, D. Nitrogen and rainfall effects on crop growth—experimental results and scenario analyses. Water 13, 2219 (2021).

    Google Scholar 

  • McKay Fletcher, D. et al. Projected increases in precipitation are expected to reduce nitrogen use efficiency and alter optimal fertilization timings in agriculture in the south east of England. ACS Es&t Eng. 2, 1414–1424 (2022).

    Google Scholar 

  • Govindasamy, P. et al. Nitrogen use efficiency-“a key to enhance crop productivity under a changing climate. Front. Plant Sci. 14, 1121073 (2023).

    Google Scholar 

  • Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. & Benfey, P. N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl. Acad. Sci. USA 118, e2022666118 (2021).

    Google Scholar 

  • Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).

    Google Scholar 

  • Sela, S. et al. Dynamic model improves agronomic and environmental outcomes for maize nitrogen management over static approach. J. Environ. Qual. 46, 311–319 (2017).

    Google Scholar 

  • Puntel, L. A. et al. A systems modeling approach to forecast corn economic optimum nitrogen rate. Front. Plant Sci. 9, 436 (2018).

    Google Scholar 

  • Scharf, P. C., Brouder, S. M. & Hoeft, R. G. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the north-central USA. Agron. J. 98, 655–665 (2006).

    Google Scholar 

  • Schmidt, J. P., Dellinger, A. E. & Beegle, D. B. Nitrogen recommendations for corn: an on-the-go sensor compared with current recommendation methods. Agron. J. 101, 916–924 (2009).

    Google Scholar 

  • Ciampitti, I. A. et al. Does the critical n dilution curve for maize crop vary across genotype x environment x management scenarios?—A Bayesian analysis. Eur. J. Agron. 123, 126202 (2021).

    Google Scholar 

  • Mandrini, G., Bullock, D. S. & Martin, N. F. Modeling the economic and environmental effects of corn nitrogen management strategies in Illinois. Field Crops Res. 261, 108000 (2021).

    Google Scholar 

  • Chunjiang, Z. et al. Evaluation of variable-rate nitrogen recommendation of winter wheat based on SPAD chlorophyll meter measurement. N. Z. J. Agric. Res. 50, 735–741 (2007).

    Google Scholar 

  • Dumont, B., Basso, B., Bodson, B., Destain, J.-P. & Destain, M.-F. Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium. Environ. Model. Softw. 79, 184–196 (2016).

    Google Scholar 

  • Kablan, L. A. et al. Variability in corn yield response to nitrogen fertilizer in eastern Canada. Agron. J. 109, 2231–2242 (2017).

    Google Scholar 

  • Vergara, O., Zuba, G., Doggett, T. & Seaquist, J. Modeling the potential impact of catastrophic weather on crop insurance industry portfolio losses. Am. J. Agric. Econ. 90, 1256–1262 (2008).

    Google Scholar 

  • Kunreuther, H. Correlated risks. In Encyclopedia of quantitative risk analysis and assessment (eds E. L. Melnick & B. S. Everitt), 374–375 (John Wiley & Sons, 2008).

  • Hernández-Rojas, L. F. et al. The role of data-driven methodologies in weather index insurance. Appl. Sci. 13, 4785 (2023).

    Google Scholar 

  • Roy, E. D., Wagner, C. R. H. & Niles, M. T. Hot spots of opportunity for improved cropland nitrogen management across the United States. Environ. Res. Lett. 16, 035004 (2021).

    Google Scholar 

  • Van Grinsven, H. J. et al. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571–3579 (2013).

    Google Scholar 

  • Rosas, F., Babcock, B. A. & Hayes, D. J. Nitrous oxide emission reductions from cutting excessive nitrogen fertilizer applications. Clim. Change 132, 353–367 (2015).

    Google Scholar 

  • Blandford, D. & Hassapoyannes, K. The role of agriculture in global GHG mitigation. OECD Food, Agriculture and Fisheries Papers No. 112, https://doi.org/10.1787/da017ae2-en (OECD Publishing, Paris, 2018).

  • Gao, Y. & Cabrera Serrenho, A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food 4, 170–178 (2023).

    Google Scholar 

  • Jain, A. K. Greenhouse gas emissions from nitrogen fertilizers. Nat. Food 4, 139–140 (2023).

    Google Scholar 

  • Illinois-EPA. Illinois nutrient loss reduction strategy. Illinois Environmental Protection Agency. https://epa.illinois.gov/topics/water-quality/watershed-management/excess-nutrients/nutrient-loss-reduction-strategy.html (Accessed 28 November 2024) (2015).

  • Pannell, D. J. Flat earth economics: the far-reaching consequences of flat payoff functions in economic decision making. Rev. Agric. Econ. 28, 553–566 (2006).

    Google Scholar 

  • Pannell, D. J. et al. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 46, 1407–1424 (2006).

    Google Scholar 

  • SriRamaratnam, S., Bessler, D. A., Rister, M. E., Matocha, J. E. & Novak, J. Fertilization under uncertainty: an analysis based on producer yield expectations. Am. J. Agric. Econ. 69, 349–357 (1987).

    Google Scholar 

  • Engel, S., Pagiola, S. & Wunder, S. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65, 663–674 (2008).

    Google Scholar 

  • Dionne, K. Y. & Horowitz, J. The political effects of agricultural subsidies in Africa: Evidence from Malawi. World Dev. 87, 215–226 (2016).

    Google Scholar 

  • Reyes-García, V. et al. The costs of subsidies and externalities of economic activities driving nature decline. Ambio 54, 1128–1141 (2025).

  • Campbell, B. M. et al. Urgent action to combat climate change and its impacts (SDG 13): transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 34, 13–20 (2018).

    Google Scholar 

  • Lyle, G., Bryan, B. & Ostendorf, B. Post-processing methods to eliminate erroneous grain yield measurements: review and directions for future development. Precis. Agric. 15, 377–402 (2014).

    Google Scholar 

  • Arslan, S. & Colvin, T. S. Grain yield mapping: yield sensing, yield reconstruction, and errors. Precis. Agric. 3, 135–154 (2002).

    Google Scholar 

  • Trevisan, R., Bullock, D. & Martin, N. Spatial variability of crop responses to agronomic inputs in on-farm precision experimentation. Precis. Agric. 22, 342–363 (2021).

    Google Scholar 

  • Alesso, C. A. & Martin, N. F. Spatial and temporal variability of corn response to nitrogen and seed rates. Agron. J. 116, 897–916 (2024).

    Google Scholar 

  • Lemaire, G. & Ciampitti, I. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review. Plants 9, 1309 (2020).

    Google Scholar 

  • Wang, X. et al. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. Eur. J. Agron. 123, 126193 (2021).

    Google Scholar 

  • Ciampitti, I. A., Briat, J.-F., Gastal, F. & Lemaire, G. Redefining crop breeding strategy for effective use of nitrogen in cropping systems. Commun. Biol. 5, 823 (2022).

    Google Scholar 

  • Shao, H. et al. Evaluating critical nitrogen dilution curves for assessing maize nitrogen status across the US Midwest. Agronomy 13, 1948 (2023).

    Google Scholar 

  • Preza-Fontes, G., Nafziger, E. D., Christianson, L. E. & Pittelkow, C. M. Relationship of in-season soil nitrogen concentration with corn yield and potential nitrogen losses. Soil Sci. Soc. Am. J. 84, 1296–1306 (2020).

    Google Scholar 

  • Kyveryga, P. & Blackmer, T. On-farm evaluations to calibrate tools for estimating late-season nitrogen status of corn. Agron. J. 104, 1284–1294 (2012).

    Google Scholar 

  • Just, R. E., Calvin, L. & Quiggin, J. Adverse selection in crop insurance: actuarial and asymmetric information incentives. Am. J. Agric. Econ. 81, 834–849 (1999).

    Google Scholar 

  • Tremblay, N. et al. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 104, 1658–1671 (2012).

    Google Scholar 

  • Lory, J. & Scharf, P. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn. Agron. J. 95, 994–999 (2003).

    Google Scholar 

  • Meisinger, J. Evaluating plant-available nitrogen in soil-crop systems. in Nitrogen in Crop Production (ed. Hauck, R. D.) 389–416 (1984).

  • Zhu, Q., Schmidt, J., Lin, H. & Sripada, R. Hydropedological processes and their implications for nitrogen availability to corn. Geoderma 154, 111–122 (2009).

    Google Scholar 

  • Agflex. Final Report on the BMP Challenge Program (American Farmland Trust, 2014).

  • Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).

    Google Scholar 

  • Campbell, S. Insuring best management practices. J. Soil Water Conserv. 58, 116A–117A (2003).

    Google Scholar 

  • Mandrini, G., Archontoulis, S. V., Pittelkow, C. M., Mieno, T. & Martin, N. F. Simulated dataset of corn response to nitrogen over thousands of fields and multiple years in Illinois. Data Brief 40, 107753 (2022).

    Google Scholar 

  • Mandrini, G., Pittelkow, C. M., Archontoulis, S., Kanter, D. & Martin, N. F. Exploring trade-offs between profit, yield, and the environmental footprint of potential nitrogen fertilizer regulations in the US Midwest. Front. Plant Sci. 13, 852116 (2022).

    Google Scholar 

  • Liu, M., Khanna, M. & Atallah, S. S. Policy instruments to promote the adoption of sustainable nitrogen management practices. Paper presented at the 2024 Agricultural and Applied Economics Association (AAEA) Annual Meeting. https://doi.org/10.22004/ag.econ.344024 (New Orleans, LA, 2024).

  • Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2 Technical Report (Oak Ridge National Laboratory (ORNL), 2014).

  • Natural Resources Conservation Service, USDA. Soil Survey Geographic (SSURGO) Database for Illinois. (2018).

  • Thorburn, P. J., Biggs, J. S., Collins, K. & Probert, M. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agric. Ecosyst. Environ. 136, 343–350 (2010).

    Google Scholar 

  • Del Grosso, S. et al. General model for N2O and N2 gas emissions from soils due to denitrification. Glob. Biogeochem. cycles 14, 1045–1060 (2000).

    Google Scholar 

  • Li, Y. et al. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecol. Model. 203, 395–423 (2007).

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023).

  • Liu, X., Elgowainy, A. & Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green. Chem. 22, 5751–5761 (2020).

    Google Scholar 

  • Hood, C. & Kidder, G. Fertilizers and energy. Fact Sheet EES-58, November (1992).

  • Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 1–9 (2019).

    Google Scholar 

  • Puntel, L. A., Pagani, A. & Archontoulis, S. V. Development of a nitrogen recommendation tool for corn considering static and dynamic variables. Eur. J. Agron. 105, 189–199 (2019).

    Google Scholar 

  • Nafziger, E., Sawyer, J., Laboski, C. & Franzen, D. The MRTN approach to making nitrogen rate recommendations: background and implementation. Crops Soils 55, 4–11 (2022).

    Google Scholar 

  • Baum, M. E. et al. The optimum nitrogen fertilizer rate for maize in the US Midwest is increasing. Nat. Commun. 16, 404 (2025).

  • Tenorio, F. A. et al. Luck versus skill: is nitrogen balance in irrigated maize fields driven by persistent or random factors?. Environ. Sci. Technol. 55, 749–756 (2020).

  • Continue Reading

  • Famous fish that survived the dinosaurs had much older relatives

    Famous fish that survived the dinosaurs had much older relatives

    Modern sightings of living coelacanths in the 20th century surprised the world, but this fish species’ story goes back a long way.

    Although coelacanth remains are well known from Paleozoic and Cretaceous rocks in Britain, very little is known…

    Continue Reading

  • Fake visa notices target Pakistani applicants in US; missions warn against unauthorised applications – Dawn

    1. Fake visa notices target Pakistani applicants in US; missions warn against unauthorised applications  Dawn
    2. Pakistani missions warn of visa scam stealing personal data  Gulf News
    3. Pakistani Consulate in US Warns Against Visa Scam Stealing Personal…

    Continue Reading

  • In Corporate Counsel, Health Care Partners Examine Survey Results on Value of AI for Regulatory Monitoring | News & Events

    In Corporate Counsel, Health Care Partners Examine Survey Results on Value of AI for Regulatory Monitoring | News & Events

    In a Corporate Counsel and Law.com article, health care partners Ben Wilson, Christine Moundas and Michael Lampert examined the results of an AI adoption and governance survey conducted by Ropes & Gray and Corporate Counsel.

    The study results found that regulatory compliance is a top concern whether in-house counsel are considering present or future AI adoption, but that there is momentum building around AI adoption in the health care and life sciences industry.

    In the highly regulated health care sector, 61 percent of the in-house counsel surveyed said that monitoring current and emerging AI laws and regulatory actions is one of the actions taken by their organizations to manage AI legal, compliance and security risks.

    Continue Reading

  • Norovirus is surging again. Tips for how to dodge the ‘stomach flu’

    Norovirus is surging again. Tips for how to dodge the ‘stomach flu’

    (SACRAMENTO)

    Norovirus is the country’s leading cause of vomiting, diarrhea, and foodborne illness, and right on schedule, it’s picking up steam again as the holidays arrive.

    Recently the California Department of Public Health (CDPH) warned…

    Continue Reading