Prasad, S. D. & Chakraborty, M. Bearing capacity of ring footing resting on two layered soil. Comput. Geotech. 134, 104088. https://doi.org/10.1016/j.compgeo.2021.104088 (2021).
Google Scholar
Seyedi Hosseininia, E. Bearing capacity factors of ring footings. Iran. J. Sci. Technol. Trans. Civil Eng. 40, 121–132. https://doi.org/10.1007/s40996-016-0003-6 (2016).
Google Scholar
Fisher, K. Zur berechnung der Setzung von fundamenten in der form einer kreisformigen ringflache. Der Bauingenieur. 32, 172–174 (1957).
Google Scholar
Egorov, K. in Proc. 6 th international conference of soil mechanics and foundation engineering. 41–45.
Egorov, K. & Nichiporovich, A. in Proceedings of the 5th international conference on soil mechanics and foundation engineering. 861–866.
Milovic, D. in Proc., 8th Int. Conf. on Soil Mechanics and Foundation Engineering. 167–171.
Al-Sanad, H. A., Ismael, N. F. & Brenner, R. P. Settlement of circular and ring plates in very dense calcareous sands. J. Geotech. Eng. 119, 622–638. https://doi.org/10.1061/(asce)0733-9410 (1993). (1993)119:4(622).
Google Scholar
Ismael, N. F. Loading tests on circular and ring plates in very dense cemented sands. J. Geotech. Eng. 122, 281–287. https://doi.org/10.1061/(asce)0733-9410(1996)122:4(281) (1996).
Google Scholar
Saha, M. Ultimate bearing capacity of ring footings on sand. M. Eng. thesis (1978).
Boushehrian, J. & Hataf, N. Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotext. Geomembr. 21, 241–256. https://doi.org/10.1016/s0266-1144(03)00029-3 (2003).
Google Scholar
Zhao, L. & Wang, J. H. Vertical bearing capacity for ring footings. Comput. Geotech. 35, 292–304. https://doi.org/10.1016/j.compgeo.2007.05.005 (2008).
Google Scholar
Kumar, J. & Chakraborty, M. Bearing Capacity Factors for Ring Foundations. J. Geotech. GeoEnviron. Eng. 141, https://doi.org/10.1061/(asce)gt.1943-5606.0001345 (2015).
Keshavarz, A. & Kumar, J. Bearing capacity computation for a ring foundation using the stress characteristics method. Comput. Geotech. 89, 33–42. https://doi.org/10.1016/j.compgeo.2017.04.006 (2017).
Google Scholar
Tang, C. & Phoon, K. K. Prediction of bearing capacity of ring foundation on dense sand with regard to stress level effect. Int. J. Geomech. 18 https://doi.org/10.1061/(asce)gm.1943-5622.0001312 (2018).
Bui-Ngoc, T., Nguyen, T., Nguyen-Quang, M. T. & Shiau, J. Predicting load-displacement of driven PHC pipe piles using stacking ensemble with Pareto optimization. Eng. Struct. 316 https://doi.org/10.1016/j.engstruct.2024.118574 (2024).
Nguyen, T., Ly, D. K., Shiau, J. & Nguyen-Dinh, P. Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks. Ocean Eng. 304, 117758. https://doi.org/10.1016/j.oceaneng.2024.117758 (2024).
Google Scholar
Nguyen-Minh, T., Bui-Ngoc, T., Shiau, J., Nguyen, T. & Nguyen-Thoi, T. Undrained sinkhole stability of circular cavity: a comprehensive approach based on isogeometric analysis coupled with machine learning. Acta Geotech. https://doi.org/10.1007/s11440-024-02266-3 (2024).
Google Scholar
Shiau, J., Nguyen, T. & Ly-Khuong, D. Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning. Ocean Eng. 297, 116987. https://doi.org/10.1016/j.oceaneng.2024.116987 (2024).
Google Scholar
Nguyen, D. K., Nguyen, T. P., Ngamkhanong, C., Keawsawasvong, S. & Lai, V. Q. Bearing capacity of ring footings in anisotropic clays: FELA and ANN. Neural Comput. Appl. 35, 10975–10996. https://doi.org/10.1007/s00521-023-08278-6 (2023).
Google Scholar
Vali, R. et al. Developing a novel big dataset and a deep neural network to predict the bearing capacity of a ring footing. Journal of Rock Mechanics and Geotechnical Engineering, (2024). https://doi.org/10.1016/j.jrmge.2024.02.016
Kolmogorov, A. N. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables (American Mathematical Society, 1961).
Kolmogorov, A. N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Translations Am. Math. Soc. 2, 55–59 (1963).
Google Scholar
Liu, Z. et al. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024).
Bolton, M. D. & Lau, C. K. Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil. Can. Geotech. J. 30, 1024–1033. https://doi.org/10.1139/t93-099 (1993).
Google Scholar
Davis, E. & Booker, J. in Proc. 1st Australian-New Zealand Conf. on Geomechanics, Melbourne. 275–282.
Shiau, J., Keawsawasvong, S. & Yodsomjai, W. Determination of support pressure for the design of square box culverts. Int. J. Geomech. 23 https://doi.org/10.1061/(asce)gm.1943-5622.0002620 (2023).
Nguyen, T. & Shiau, J. Revisiting active and passive Earth pressure problems using three stability factors. Comput. Geotech. 163, 105759. https://doi.org/10.1016/j.compgeo.2023.105759 (2023).
Google Scholar
Krabbenhoft, K., Lyamin, A. & Krabbenhoft, J. Optum computational engineering (OptumG2). Computer software (2015).
Gholami, H. & Hosseininia, E. S. Bearing capacity factors of ring footings by using the method of characteristics. Geotech. Geol. Eng. 35, 2137–2146. https://doi.org/10.1007/s10706-017-0233-9 (2017).
Google Scholar
Chavda, J. T. & Dodagoudar, G. R. Finite element evaluation of vertical bearing capacity factors N′c, N′q, N′γ for ring footings. Geotech. Geol. Eng. 37, 741–754. https://doi.org/10.1007/s10706-018-0645-1 (2018).
Google Scholar
Benmebarek, S., Remadna, M. S., Benmebarek, N. & Belounar, L. Numerical evaluation of the bearing capacity factor of ring footings. Comput. Geotech. 44, 132–138. https://doi.org/10.1016/j.compgeo.2012.04.004 (2012).
Google Scholar
Mangalathu, S., Hwang, S. H. & Jeon, J. S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley additive explanations (SHAP) approach. Eng. Struct. 219, 110927. https://doi.org/10.1016/j.engstruct.2020.110927 (2020).
Google Scholar