Author: admin

  • The Ashes 2025: Australia captain Pat Cummins out of second Test in Brisbane

    The Ashes 2025: Australia captain Pat Cummins out of second Test in Brisbane

    Without Cummins and Hazlewood, Australia could field an unchanged attack for the pink-ball Test.

    In Perth, left-armer Mitchell Starc took 10 wickets and was named player of the match. He was joined by fellow seamers Scott Boland and debutant…

    Continue Reading

  • The Ashes 2025: Australia captain Pat Cummins out of second Test in Brisbane

    The Ashes 2025: Australia captain Pat Cummins out of second Test in Brisbane

    Without Cummins and Hazlewood, Australia could field an unchanged attack for the pink-ball Test.

    In Perth, left-armer Mitchell Starc took 10 wickets and was named player of the match. He was joined by fellow seamers Scott Boland and debutant…

    Continue Reading

  • Teesside bird tracking antenna picks up first sightings

    Teesside bird tracking antenna picks up first sightings

    A new antenna which tracks birds has made its first detection.

    Teesside’s RSBP Saltholme reserve manager Chris Francis said its Motus antenna, which was installed in May, would help researchers better understand the migratory patterns of the…

    Continue Reading

  • Scientists unveil roadmap for growing plants on Moon, Mars for Artemis III mission

    Scientists unveil roadmap for growing plants on Moon, Mars for Artemis III mission

    For a long-term plan to support human life on the Moon and Mars, scientists have outlined a roadmap for using plants, utilizing technologies that could also transform sustainable food production on Earth.

    Forty scientists from multiple countries…

    Continue Reading

  • Sobha, T., Vibija, C., & Fahima, P. Coral reef: A hot spot of marine biodiversity. In: Conservation and Sustainable Utilization of Bioresources, pp. 171–194. Springer, Singapore (2023)

  • Programme, U.E. Coral Reefs. Accessed: 17 September 2025 (2020). https://www.unep.org/topics/ocean-seas-and-coasts/blue-ecosystems/coral-reefs

  • Lachs, L. & Oñate-Casado, J. Fisheries and tourism: Social, economic, and ecological trade-offs in coral reef systems. In Youmares 9-the Oceans: Our Research 243–260 (Springer, Oldenburg, Germany, 2020).

  • Küfeoğlu, S. SDG-14: Life Below Water, pp. 453–468. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07127-0_16

  • Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. Status of coral reefs of the world: 2020: Executive summary. Global Coral Reef Monitoring network (GCRMN) and International Coral Reef Initiative (2021)

  • Lin, Y.-J. et al. Coral reefs in the northeastern saudi arabian red sea are resilient to mass coral mortality events. Mar. Pollut. Bull. 197, 115693 (2023).

    Google Scholar 

  • Kleinhaus, K. et al. Science, diplomacy, and the red sea’s unique coral reef: It’s time for action. Front. Mar. Sci. 7, 90 (2020).

    Google Scholar 

  • Monroe, A. A. et al. In situ observations of coral bleaching in the central saudi arabian red sea during the 2015/2016 global coral bleaching event. PLoS One 13(4), 0195814 (2018).

    Google Scholar 

  • ISO: Underwater Acoustics-Terminology. International Organization for Standardization Geneva, Switzerland (2017)

  • Lin, T.-H., Akamatsu, T., Sinniger, F. & Harii, S. Exploring coral reef biodiversity via underwater soundscapes. Biol. Cons. 253, 108901 (2021).

    Google Scholar 

  • Lamont, T. A. et al. The sound of recovery: Coral reef restoration success is detectable in the soundscape. J. Appl. Ecol. 59(3), 742–756 (2022).

    Google Scholar 

  • Gordon, T. A. et al. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes. Proc. Natl. Acad. Sci. 115(20), 5193–5198 (2018).

    Google Scholar 

  • Ferrier-Pagès, C. et al. Noise pollution on coral reefs?—A yet underestimated threat to coral reef communities. Mar. Pollut. Bull. 165, 112129 (2021).

    Google Scholar 

  • Piercy, J.J.B. The Relevance of Coral Reef Soundscapes to Iarval Fish Responses. PhD thesis, University of Essex (2015)

  • Raick, X., Di Iorio, L., Gervaise, C., Lossent, J., Lecchini, D., & Parmentier, E. From the reef to the ocean: Revealing the acoustic range of the biophony of a coral reef (moorea island, french polynesia). J. Mar. Sci. Eng. 9(4) (2021https://doi.org/10.3390/jmse9040420

  • Payne, R. & Webb, D. Orientation by means of long range acoustic signaling in baleen whales. Ann. N. Y. Acad. Sci. 188(1), 110–141 (1971).

    Google Scholar 

  • Duarte, C. M. et al. The soundscape of the anthropocene ocean. Science 371(6529), 4658 (2021).

    Google Scholar 

  • Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evolut. 25(7), 419–427 (2010).

    Google Scholar 

  • Bohnenstiehl, D. R., Lillis, A. & Eggleston, D. B. The curious acoustic behavior of estuarine snapping shrimp: Temporal patterns of snapping shrimp sound in sub-tidal oyster reef habitat. PLoS One 11(1), 0143691 (2016).

    Google Scholar 

  • Kaplan, M. B., Mooney, T. A., Partan, J. & Solow, A. R. Coral reef species assemblages are associated with ambient soundscapes. Mar. Ecol. Prog. Ser. 533, 93–107 (2015).

    Google Scholar 

  • Saheban, H. & Kordrostami, Z. Hydrophones, fundamental features, design considerations, and various structures: A review. Sens. Actuators, A 329, 112790. https://doi.org/10.1016/j.sna.2021.112790 (2021).

    Google Scholar 

  • Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65(1), 7–19 (2020).

    Google Scholar 

  • Nedelec, S. L. et al. Soundscapes and living communities in coral reefs: Temporal and spatial variation. Mar. Ecol. Prog. Ser. 524, 125–135 (2015).

    Google Scholar 

  • Azofeifa-Solano, J. C. et al. Distance and orientation of hydrophones influence the received soundscape in shallow coral reefs. Front. Remote Sens. 6, 1527988 (2025).

    Google Scholar 

  • Howell, K. L. et al. A decade to study deep-sea life. Nat. Ecol. Evolut. 5(3), 265–267 (2021).

    Google Scholar 

  • Ford, B., Robinson, S., & Ablitt, J. A study of the stability exhibited by hydrophones when exposed to variation in temperature and hydrostatic pressure. In: Proc. of Meetings on Acoustics, vol. 44 (2021)

  • Burkholz, C., Duarte, C. & Garcias-Bonet, N. Thermal dependence of seagrass ecosystem metabolism in the red sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/MEPS12912 (2019).

    Google Scholar 

  • Reif, R. H., Liffers, M., Forrester, N. & Peal, K. Lithium battery safety: A look at woods hole oceanographic institution’s program. Prof. Saf. 55(02), 32–37 (2010).

    Google Scholar 

  • Ashry, I. et al. A review of distributed fiber-optic sensing in the oil and gas industry. J. Lightwave Technol. 40(5), 1407–1431 (2022).

    Google Scholar 

  • Juškaitis, R., Mamedov, A., Potapov, V. & Shatalin, S. Distributed interferometric fiber sensor system. Opt. Lett. 17(22), 1623–1625 (1992).

    Google Scholar 

  • Tucker, R. S., Eisenstein, G. & Korotky, S. K. Optical time-division multiplexing for very high bit-rate transmission. J. Lightwave Technol. 6(11), 1737–1749 (2002).

    Google Scholar 

  • Harmon, N., Belal, M., Mangriotis, M.-D., Spingys, C., & Rychert, C.A. Distributed acoustic sensing along a shallow water energy cable. IEEE J. Oceanic Eng. 2025)

  • Marra, G. et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361(6401), 486–490 (2018).

    Google Scholar 

  • Winzer, P. J. & Neilson, D. T. From scaling disparities to integrated parallelism: A decathlon for a decade. J. Lightwave Technol. 35(5), 1099–1115 (2017).

    Google Scholar 

  • Miele, P., Snead, K., Zakhireh, N., Homa, D., Pickrell, G., & Risch, B.G. Optical fiber reliability in harsh environments. In: Int. Wire & Cable Symp (2020)

  • Bouffaut, L. et al. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the arctic. Front. Mar. Sci. 9, 901348 (2022).

    Google Scholar 

  • Landrø, M. et al. Sensing whales, storms, ships and earthquakes using an arctic fibre optic cable. Sci. Rep. 12(1), 19226 (2022).

    Google Scholar 

  • Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables. Nat. Commun. 10(1), 5777 (2019).

    Google Scholar 

  • Rørstadbotnen, R.A., Landrø, M., Taweesintananon, K., Bouffaut, L., Potter, J.R., Johansen, S.E., Kriesell, H.J., Brenne, J.K., Haukanes, A., Schjelderup, O., & Storvik, F. Analysis of a local earthquake in the arctic using a 120 km long fibre-optic cable 2022(1), 1–5 (2022) https://doi.org/10.3997/2214-4609.202210404

  • Lin, J. et al. Monitoring ocean currents during the passage of typhoon muifa using optical-fiber distributed acoustic sensing. Nat. Commun. 15(1), 1111 (2024).

    Google Scholar 

  • Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7(5), 354–362 (2013).

    Google Scholar 

  • Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE J. Sel. Top. Quantum Electron. 26(4), 1–7 (2020).

    Google Scholar 

  • Huang, M.-F. et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. J. Lightwave Technol. 38(1), 75–81 (2019).

    Google Scholar 

  • Marin, J. M. et al. Simultaneous distributed acoustic sensing and communication over a two-mode fiber. Opt. Lett. 47(24), 6321–6324 (2022).

    Google Scholar 

  • Hu, Z. et al. Enabling cost-effective high-performance vibration sensing in digital subcarrier multiplexing systems. Opt. Express 31(20), 32114–32125 (2023).

    Google Scholar 

  • Guo, Y. et al. Submarine optical fiber communication provides an unrealized deep-sea observation network. Sci. Rep. 13(1), 15412 (2023).

    Google Scholar 

  • Gunawan, W.H., Marin, J.M., Rjeb, A., Kang, C.H., Ashry, I., Ng, T.K., & Ooi, B.S. Energy harvesting over fiber from amplified spontaneous emission in optical sensing and communication systems. J. Lightwave Technol. 2024)

  • Gavrilov, A.N., & Parsons, M.J. A matlab tool for the characterisation of recorded underwater sound (chorus). Acoustics Australia 42(3) (2014)

  • Song, Z. et al. Sounds of snapping shrimp (alpheidae) as important input to the soundscape in the southeast china coastal sea. Front. Mar. Sci. 10, 1029003 (2023).

    Google Scholar 

  • Amorim, M. C. P. Diversity of sound production in fish. Commun. Fishes 1, 71–104 (2006).

    Google Scholar 

  • Ladich, F. Ecology of sound communication in fishes. Fish Fish. 20(3), 552–563 (2019).

    Google Scholar 

  • Ladich, F., Bass, A. & Farrell, A. Vocal behavior of fishes: Anatomy and physiology. Encyclopedia of Fish Physiology: From Genome to Environment 1, 321–329 (2011).

    Google Scholar 

  • Xing, C., Tan, G., & Ran, Y. Enhanced off-grid underwater acoustic signals direction estimation using toeplitz covariance reconstruction and subspace fitting. Circuits, Systems, and Signal Processing, 1–29 (2025)

  • Rørstadbotnen, R. A. et al. Simultaneous tracking of multiple whales using two fiber-optic cables in the arctic. Front. Mar. Sci. 10, 1130898 (2023).

    Google Scholar 

  • Malfante, M., Mars, J. I., Dalla Mura, M. & Gervaise, C. Automatic fish sounds classification. J. Acoust. Soc. Am. 143(5), 2834–2846 (2018).

    Google Scholar 

  • Looby, A. et al. A quantitative inventory of global soniferous fish diversity. Rev. Fish Biol. Fisheries 32(2), 581–595 (2022).

    Google Scholar 

  • Ladich, F. & Fine, M. L. Sound-generating mechanisms in fishes: A unique diversity in vertebrates. Commun. Fishes 1, 3–43 (2006).

    Google Scholar 

  • Staaterman, E., Paris, C. B. & Kough, A. S. First evidence of fish larvae producing sounds. Biol. Let. 10(10), 20140643 (2014).

    Google Scholar 

  • Parsons, M. J. et al. Sounding the call for a global library of underwater biological sounds. Front. Ecol. Evol. 10, 810156 (2022).

    Google Scholar 

  • Ashry, I. et al. Cnn-aided optical fiber distributed acoustic sensing for early detection of red palm weevil: A field experiment. Sensors 22(17), 6491 (2022).

    Google Scholar 

  • Rivet, D., Cacqueray, B., Sladen, A., Roques, A. & Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 149(4), 2615–2627 (2021).

    Google Scholar 

  • Liu, Z., Zhang, L., Liu, H., Qiu, Z., Xiao, Z., Chen, Z., Wang, T., & Pang, F. 3d printing technology-enhanced phase-sensitive otdr for underwater acoustic wave detection. Optical Fiber Sensors Conference 2020 Special Edition (2021) https://doi.org/10.1364/ofs.2020.t3.26

  • Zhu, S., Chen, J., Ai, K., Fan, C., Li, H., Yan, Z., & Sun, Q. Fully distributed fiber-optic hydrophone cable for acoustic source azimuth estimation. 2024 OES China Ocean Acoustics (COA), 1–5 (2024) https://doi.org/10.1109/COA58979.2024.10723668

  • Zhang, C., Yang, S. & Wang, X. Dual pulse heterodyne distributed acoustic sensor system employing soa-based fiber ring laser. Front. Phys. 11, 1196067 (2023).

    Google Scholar 

  • Zhang, Y., Yang, H., Chen, Z., Sun, F. & Mao, B. Design and analysis of mems piezoelectric hydrophone based on signal-to-noise ratio. IEEE Sens. J. 25, 11314–11322. https://doi.org/10.1109/JSEN.2025.3540307 (2025).

    Google Scholar 

  • Lamont, T.A.C., Chapuis, L., Williams, B., Dines, S., Gridley, T., Frainer, G., Fearey, J., Maulana, P.B., Prasetya, M.E., Jompa, J., Smith, D.J., & Simpson, S. Hydromoth: Testing a prototype low?cost acoustic recorder for aquatic environments. Remote Sens. Ecol. Conserv. 8 (2022) https://doi.org/10.1002/rse2.249

  • Dahl, P., Miller, J. H., Cato, D. & Andrew, R. Underwater ambient noise. Acoustics Today 3, 23. https://doi.org/10.1121/1.2961145 (2007).

    Google Scholar 

  • Dalton, S. J. et al. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from el niño to la niña. Sci. Total Environ. 715, 136951. https://doi.org/10.1016/j.scitotenv.2020.136951 (2020).

    Google Scholar 

  • Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B.T., Buric, M.P., & Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev.6(4) (2019)

  • Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE J. Sel. Top. Quantum Electron. 26(4), 1–7 (2020).

    Google Scholar 

  • Mao, Y. et al. Sensing within the otdr dead-zone using a two-mode fiber. Opt. Lett. 45(11), 2969–2972 (2020).

    Google Scholar 

  • Lu, Y., Zhu, T., Chen, L. & Bao, X. Distributed vibration sensor based on coherent detection of phase-otdr. J. Lightwave Technol. 28(22), 3243–3249 (2010).

    Google Scholar 

  • Bao, X., Zhou, D.-P., Baker, C. & Chen, L. Recent development in the distributed fiber optic acoustic and ultrasonic detection. J. Lightwave Technol. 35(16), 3256–3267 (2017).

    Google Scholar 

  • Posey, R. Jr., Johnson, G. & Vohra, S. Strain sensing based on coherent rayleigh scattering in an optical fibre. Electron. Lett. 36(20), 1688–1689 (2000).

    Google Scholar 

  • Lillis, A. & Mooney, T. A. Snapping shrimp sound production patterns on caribbean coral reefs: Relationships with celestial cycles and environmental variables. Coral Reefs 37(2), 597–607 (2018).

    Google Scholar 

  • Ashry, I. et al. Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. Appl. Opt. 58(18), 4933–4938 (2019).

    Google Scholar 

Continue Reading

  • Access Denied


    Access Denied

    You don’t have permission to access “http://www.ndtv.com/world-news/pakistan-former-prime-minister-imran-khan-health-news-live-updates-imran-khans-death-rumours-rage-on-family-says-no-contact-for-weeks-9713816” on this…

    Continue Reading

  • High School Dropout Now at OpenAI Says He Used ChatGPT to Learn AI

    High School Dropout Now at OpenAI Says He Used ChatGPT to Learn AI

    A high school dropout learned machine learning with ChatGPT. Now he’s a research scientist at OpenAI working on Sora.

    Gabriel Petersson said on an episode of the “Extraordinary” podcast published on Thursday that he’s…

    Continue Reading

  • SK hynix Presents AI Memory, HBM4 at Supercomputing 2025

    SK hynix Presents AI Memory, HBM4 at Supercomputing 2025

    SK hynix showcased advanced memory technologies for the era of AI and high-performance computing (HPC) at Supercomputing 2025 (SC25), held in St. Louis, the U.S., from November 16–21.

    Held annually since 1988, SC is the world’s largest…

    Continue Reading

  • Today’s daily horoscopes: Nov. 28, 2025

    Today’s daily horoscopes: Nov. 28, 2025

    Two lunar squares give emotional challenge to the last day of Mercury’s retrograde. Whatever pushes your buttons, knocks on your heart or crashes your emotions, just know there will be resolution and relief soon. The best way over an emotion…

    Continue Reading

  • Air pollution may cut into health benefits from exercise, study finds

    Air pollution may cut into health benefits from exercise, study finds

    Published on

    The health benefits of regular exercise fall sharply in neighbourhoods with dirty air, a new analysis…

    Continue Reading