Following a year in the life of an “ordinary” woman, Carol, Andrea Gibbs’ second play for Black Swan State Theatre Company is a real original.
Moving between moments in front of the curtain and scenes behind the proscenium, the play…

Following a year in the life of an “ordinary” woman, Carol, Andrea Gibbs’ second play for Black Swan State Theatre Company is a real original.
Moving between moments in front of the curtain and scenes behind the proscenium, the play…

At SC25, we saw something neat in the Arista booth. Going through the photos, Arista showed off not just a high-throughput Broadcom Tomahawk switch, but also brought…

Arie Firdaus
BBC Indonesian
The widespread flooding and landslides hitting Indonesia over the past few days have been triggered by Cyclone…

It’s unusual, if not rare, for a work by an acclaimed poet to appear in the pages of a national newspaper, only for it to vanish without trace, then resurface, 18 years later, and go on to become one of Ireland’s greatest poems.
The poet was

With the opening of its new high-tech vaccine manufacturing facility at Tullamarine, CSL Seqirus is turning the page.
The site near Melbourne Airport includes three buildings and will have a gross floor area of 28,400m2, larger than the playing surface of the famous Melbourne Cricket Ground. The facility has been electrified and incorporates on-site solar energy generation, heat and water recovery to preserve a healthier environment.
“This facility will build a platform for our next wave of innovation in vaccines and unique health challenges, setting a new standard of care,” said CSL Seqirus Managing Director Dave Ross, who will be on hand for the 2 December opening celebration.
Globally, the World Health Organization estimates that seasonal flu infects 1 billion people annually, causing severe illness in 3-5 million and 290,000-650,000 respiratory deaths.
Here are five facts about the new site, built to protect public health:

BRISBANE, Australia (AP) — Leading 1-0 in the five-test Ashes series after a stunning two-day win in the first test at Perth, Australia has named an unchanged squad for the day-night second match at the Gabba in Brisbane starting Dec. 4.
Captain…

Ricoh is a leading provider of integrated digital services and print and imaging solutions designed to support digital transformation of workplaces, workspaces and optimize business performance.
Headquartered in Tokyo, Ricoh’s global operation reaches customers in approximately 200 countries and regions, supported by cultivated knowledge, technologies, and organizational capabilities nurtured over its 85-year history. In the financial year ended March 2025, Ricoh Group had worldwide sales of 2,527 billion yen (approx. 16.8 billion USD).
It is Ricoh’s mission and vision to empower individuals to find Fulfillment through Work by understanding and transforming how people work so we can unleash their potential and creativity to realize a sustainable future.
For further information, please visit
###
© 2025 RICOH COMPANY, LTD. All rights reserved. All referenced product names are the trademarks of their respective companies.
Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 135 (2022).
Aguilar-Lopez, M., Dinsmoor, A. M., Ho, T. T. B. & Donovan, S. M. A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes 13, 1–33 (2021).
DeVeaux, A., Ryou, J., Dantas, G., Warner, B. B. & Tarr, P. I. Microbiome-targeting therapies in the neonatal intensive care unit: safety and efficacy. Gut Microbes 15, 2221758 (2023).
Staude, B. et al. The microbiome and preterm birth: a change in paradigm with profound implications for pathophysiologic concepts and novel therapeutic strategies. Biomed. Res. Int. 2018, 7218187 (2018).
Bårdsen, T. et al. Impaired lung function in extremely preterm-born adults in their fourth decade of life. Am. J. Respir. Crit. Care Med. 208, 493–495 (2023).
Islam, J. Y., Keller, R. L., Aschner, J. L., Hartert, T. V. & Moore, P. E. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 192, 134–156 (2015).
Bårdsen, T. et al. Tracking of lung function from 10 to 35 years after being born extremely preterm or with extremely low birth weight. Thorax 77, 790–798 (2022).
Lee, D. M. X., Tan, A. K. S., Ng, Y. P. M. & Amin, Z. Quality of life of patients and caregivers affected by bronchopulmonary dysplasia: a systematic review. Qual. Life Res. 32, 1859–1869 (2023).
Horbar, J. D. et al. Trends in mortality and morbidities for infants born 24 to 28 weeks in the US: 1997–2021. Pediatrics 153, e2023064153 (2024).
Holzfurtner, L. et al. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol. Cell Pediatr. 9, 7 (2022).
Pammi, M. et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: a systematic review. J.Pediatr. 204, 126-133.e2 (2019).
Young, K. C., Del Moral, T., Claure, N., Vanbuskirk, S. & Bancalari, E. The association between early tracheal colonization and bronchopulmonary dysplasia. J. Perinatol. 25, 403–407 (2005).
Mourani, P. M., Harris, J. K., Sontag, M. K., Robertson, C. E. & Abman, S. H. Molecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants. PloS one 6, e25959 (2011).
Ehrhardt, H. et al. Mode of delivery and incidence of bronchopulmonary dysplasia: results from the population-based EPICE cohort. Neonatology 119, 464–473 (2022).
Staude, B. et al. Microbial signatures in amniotic fluid at preterm birth and association with bronchopulmonary dysplasia. Respir. Res. 24, 248 (2023).
Lauer, T. et al. Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants <1000 g. J. Clin. Med. 9, 2240 (2020).
Rofael, S. A. D. et al. Airway microbiome in adult survivors of extremely preterm birth: the EPICure study. The European respiratory journal 53 (2019).
Dolma, K. et al. Effects of hyperoxia on alveolar and pulmonary vascular development in germ-free mice. Am. J. Physiol. Lung Cell.Mol. physiol. 318, L421–L428 (2020).
Dong, Y. et al. Insights into the black box of intra-amniotic infection and its impact on the premature lung: from clinical and preclinical perspectives. Int. J. Mol. Sci. 23, 9792 (2022).
Shrestha, A. K. et al. Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice. Am. J. physiol. Lung cell. Mol. Physiol. 316, L229–L244 (2019).
Shrestha, A. K. et al. Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am. J. physiol. Lung cell. Mol. Physiol. 319(L981), L996 (2020).
Huang, J. et al. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal. Ed. 104, F128–F136 (2019).
Köstlin-Gille, N. et al. Early initiation of antibiotic therapy and short-term outcomes in preterm infants: a single-centre retrospective cohort analysis. Arch. Dis. Child. Fetal Neonatal Ed. 108(623), 630 (2023).
Romijn, M. et al. Prediction models for bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis. J. Pediatr. 258, 113370 (2023).
Christoph J et al. Risikocharakterisierung Intensivmedizinisch Behandelter Früh- Und Neugeborener Und Daten Zur Ist-Situation in Deutschen Neonatologischen Intensivpflegestationen 2013 – Fachliche Erläuterungen Zu Folgender Empfehlung: Praktische Umsetzung Sowie Krankenhaushygienische Und Infektionspräventive Konsequenzen Des Mikrobiellen Kolonisationsscreenings Bei Intensivmedizinisch Behandelten Früh- Und Neugeborenen Ergänzende Empfehlung Der Kommission Für Krankenhaushygiene Und Infektionsprävention (KRINKO) Beim Robert Koch-Institut, Berlin Zur Implementierung Der Empfehlungen Zur Prävention Nosokomialer Infektionen Bei Neonatologischen Intensivpflegepatienten Mit Einem Geburtsgewicht Unter 1.500 g Aus Dem Jahr 2007 Und 2012. 42 (Epidemiologisches Bulletin des Robert Koch-Instituts, Berlin, 2013).
Parm, U. et al. Risk factors associated with gut and nasopharyngeal colonization by common gram-negative species and yeasts in neonatal intensive care units patients. Early Hum. Dev. 87, 391–399 (2011).
Sgro, M. et al. Early-onset neonatal sepsis: rate and organism pattern between 2003 and 2008. J. Perinatol. : Off. J. California Perinat. Assoc. 31, 794–798 (2011).
Kaufman, D. & Fairchild, K. D. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 17, 638–80 (2004).
Joubert, I. A., Otto, M., Strunk, T. & Currie, A. J. Look who’s talking: host and pathogen drivers of staphylococcus epidermidis virulence in neonatal sepsis. Int. J. Mol. Sci. 23, 860 (2022).
Davis, E. C. et al. Gut microbiome and breast-feeding: Implications for early immune development. J.Allergy Clin. Immunol. 150, 523–534 (2022).
Thiess, T. et al. Correlation of early nutritional supply and development of bronchopulmonary dysplasia in preterm infants <1,000 g. Front. Pediatr. 9, 741365 (2021).
Voigt, M., Schneider, K. T. M. & Jährig, K. Analyse des Geburtengutes des Jahrgangs 1992 der Bundesrepublik Deutschland [Analysis of a 1992 birth sample in Germany. 1: New percentile values of the body weight of newborn infants]. Geburtshilfe Frauenheilkd 56, 550–558 (1996).
Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729 (2001).
Fawke, J. et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am. J. Respire. Crit. Care Med. 182, 237–245 (2010).
Walter, S. D., Feinstein, A. R. & Wells, C. K. Coding ordinal independent variables in multiple regression analyses. Am. J. Epidemiol. 125, 319–323 (1987).
Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. (Chapman and Hall/CRC, New York). https://doi.org/10.1201/9781315370279. (2017)
Gertheiss, J., Scheipl, F., Lauer, T. & Ehrhardt, H. Statistical inference for ordinal predictors in generalized additive models with application to bronchopulmonary dysplasia. BMC Res. Notes 15, 112 (2022).
Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graphical Stat. 15, 651–674 (2006).
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).
R Core Team. R: A Language and Environment for Statistical Computing. (2023).
Rückle, X. et al. Different probiotic strains alter human cord blood monocyte responses. Pediatr. Res. 94, 103–111 (2023).
Samara, J. et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe 30, 696-711.e5 (2022).
Elazab, N. et al. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics 132, e666-76 (2013).
Collins, J. J. P. et al. Repeated intrauterine exposures to inflammatory stimuli attenuated transforming growth factor-\textgreekb signaling in the ovine fetal lung. Neonatology 104, 49–55 (2013).
Azizia, M., Lloyd, J., Allen, M., Klein, N. & Peebles, D. Immune status in very preterm neonates. Pediatrics 129, e967-74 (2012).
Schmidt, B., Roberts, R., Millar, D. & Kirpalani, H. Evidence-based neonatal drug therapy for prevention of bronchopulmonary dysplasia in very-low-birth-weight infants. Neonatology 93, 284–287 (2008).
Brewer, M. R. et al. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia. J. Maternal-fetal Neonatal Med.:Official J. Euro. Assoc. Perinat. Med. Federation Asia Oceania Perinat. Soc. Int. Soc. Perinat. Obstetricians 34, 3220–3226 (2021).
Strobel, N. A., Adams, C., McAullay, D. R. & Edmond, K. M. 2022 Mother’s own milk compared with formula milk for feeding preterm or low birth weight infants: systematic review and meta-analysis. Pediatrics 150,= (2022).
Vatne, A. et al. Early empirical antibiotics and adverse clinical outcomes in infants born very preterm: a population-based cohort. J. Pediatr. 253, 107-114.e5 (2023).
Batta, V. K., Rao, S. C. & Patole, S. K. Bifidobacterium infantis as a probiotic in preterm infants: a systematic review and meta-analysis. Pediatr. Res. 94, 1887–1905 (2023).
Villamor-Martínez, E. et al. Probiotic supplementation in preterm infants does not affect the risk of bronchopulmonary dysplasia: a meta-analysis of randomized controlled trials. Nutrients 9, 1197 (2017).
Beck, L. C. et al. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat. Microbiol. 7, 1525–1535 (2022).
Wang, Y. et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis. JAMA Pediatr. 177, 1158–1167 (2023).
Martí, M. et al. Effects of Lactobacillus reuteri supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trial. Cell Rep. Med. 2, 100206 (2021).
Hoshiyar, A. ordPens: an R package for selection, smoothing and principal components analysis for ordinal variables. J. Open Source Softw. 6, 3828 (2021).