Author: admin

  • As Norovirus cases rise, here’s what to know about this year’s spread — and how to protect yourself

    As Norovirus cases rise, here’s what to know about this year’s spread — and how to protect yourself

    A nasty, highly contagious virus is spreading across the country ahead of the holiday season — and it’s not the flu or Covid.

    Norovirus, also called the “winter vomiting disease,” has been rising across the nation since as early as…

    Continue Reading

  • Garmin’s Newest Running Watches Are Already on Sale for Black Friday

    Garmin’s Newest Running Watches Are Already on Sale for Black Friday

    We may earn a commission from links on this page.
    Deal pricing and availability subject to change after time of publication.


    Black Friday sales officially start Friday, November 28, and run through…

    Continue Reading

  • Why the pressure on bitcoin may linger into year-end

    Why the pressure on bitcoin may linger into year-end

    Continue Reading

  • Enough With Ratty Sweatpants and Sad Slippers: This Winter, Cozy Up Without Giving Up on Style

    Enough With Ratty Sweatpants and Sad Slippers: This Winter, Cozy Up Without Giving Up on Style

    This September celebrity stylist Kate Young touched down at Charles de Gaulle airport in time for Paris fashion week, zipped over to the Toronto Film Festival to help Scarlett Johansson get red-carpet ready and sported her finest feathers to a…

    Continue Reading

  • Dolores Fonzi ‘Belén’: Interview

    Dolores Fonzi ‘Belén’: Interview

    Dolores Fonzi’s Belén, based on the book Somos Belén by Ana Correa, is a true story that follows the contentious case of a young Argentinian woman (Camila Plaate) who is admitted to a hospital with severe abdominal pain, unaware that she is…

    Continue Reading

  • Ketels, C. H. M. Recent research on competitiveness and clusters: what are the implications for regional policy? Camb. J. Reg. Econ. Soc. 6 (2), 269–284. https://doi.org/10.1093/cjres/rst008 (2013).

    Google Scholar 

  • Smorodinskaya, N. V. & Katukov, D. D. When and why regional clusters become basic Building blocks of modern economy. Baltic Region. 11 (3), 61–91. https://doi.org/10.5922/2079-8555-2019-3-4 (2019).

    Google Scholar 

  • Boronenko, V. & Zeibote, Z. The potential of cluster development and the role of cluster support policies in Latvia. Economic Annals. 56 (191), 35–67 (2011).

    Google Scholar 

  • Hill, E. W. & Brennan, J. F. A methodology for identifying the drivers of industrial clusters: the foundation of regional competitive advantage. Econ. Dev. Q. 14 (1), 65–96. https://doi.org/10.1177/089124240001400109 (2000).

    Google Scholar 

  • Pickernell, D., Rowe, P. A., Christie, M. J. & Brooksbank, D. Developing a framework for network and cluster identification for use in economic development policy-making. Entrepreneurship Reg. Dev. 19 (4), 339–358. https://doi.org/10.1080/08985620701275411 (2007).

    Google Scholar 

  • Stejskal, J. Comparison of often applied methods for industrial cluster identification. In: International Conference on Development, Energy, Environment, Economics (DEEE), Puerto, De La Cruz, (pp 282–286). WSEAS Press. (2010).

  • Bergman, E. M. & Feser, E. J. Industrial and Regional Clusters: Concepts and Comparative applications. Web Book in Regional Science (West Virginia University, 1999). https://researchrepository.wvu.edu/rri-web-book/5/Regional Research Institute.

  • Terstriep, J. Cluster mapping: Analysis grid, Institute for Work and Technology. (2008). https://www.iat.eu/media/wp6-cluster_mapping_v1_5.pdf. Accessed 4 March 2025.

  • Hamoud, A. K., Abd Ulkareem, M., Hussain, H. N., Mohammed, Z. A. & Salih, G. M. Improve HR decision-making based on data mart and OLAP. Journal of Physics: Conference Series, 1530(1), 012058. (2020). https://doi.org/10.1088/1742-6596/1530/1/012058

  • Dahr, J. M., Hamoud, A. K., Najm, I. A. & Ahmed, M. I. Implementing sales decision support system using data Mart based on OLAP, KPI, and data mining approaches. J. Eng. Sci. Technol. 17 (1), 275–293 (2022).

    Google Scholar 

  • Rino, R. Implementation of business intelligence in data superstore sales with online analytical processing method. bit-Tech 3 (2), 44–50. https://doi.org/10.32877/bt.v3i2.182 (2020).

    Google Scholar 

  • Wardhani, F. Z. D. & Wiratama, J. Improving the quality of service: ETL implementation on data warehouse at pharmacy industry. Jurnal Tekno Kompak. 18 (1), 1–14. https://doi.org/10.33365/jtk.v18i1.3211 (2024).

    Google Scholar 

  • Leung, C. K., Chen, Y., Hoi, C. S. H. & Shang, S. Machine learning and OLAP on big COVID-19 data. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data) (p. 9378407). IEEE. (2020). https://doi.org/10.1109/BigData50022.2020.9378407

  • Maliappis, M. T. & Kremmydas, D. An online analytical processing (OLAP) database for agricultural policy data: A Greek case study. Proceedings of the 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2015), Kavala, Greece, September 17–20, 2015, 214–225. CEUR-WS.org.pdf Accessed 16 Oct 2025 (2015).

  • Argüelles, M., Benavides, C. & Fernández, I. A new approach to the identification of regional clusters: hierarchical clustering on principal components. Appl. Econ. 46 (21), 2511–2519. https://doi.org/10.1080/00036846.2014.904491 (2014).

    Google Scholar 

  • Guo, J., Lao, X. & Shen, T. Location-based method to identify industrial clusters in Beijing-Tianjin-Hebei area in China. J. Urban. Plan. Dev. 145 (1), 04019001. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000497 (2019).

    Google Scholar 

  • Papagiannidis, S., See-To, E. W. K., Assimakopoulos, D. G. & Yang, Y. Identifying industrial clusters with a novel big-data methodology: are SIC codes (not) fit for purpose in the internet age? Comput. Oper. Res. 98, 355–366. https://doi.org/10.1016/j.cor.2017.06.010 (2018).

    Google Scholar 

  • Porter, M. E. The competitive advantage of nations. Harvard Business Rev. 68 (2), 73–93 (1990).

    Google Scholar 

  • Porter, M. E. Clusters and the new economics of competition. Harvard Business Rev. 76 (6), 77–90 (1998).

    Google Scholar 

  • Ketels, C. H. M. The development of the cluster concept—present experiences and further developments [Paper presentation]. NRW Conference on Clusters, Duisburg, Germany. (2003).

  • Rosenfeld, S. A. Bringing business clusters into the mainstream of economic development. Eur. Plan. Stud. 5 (1), 3–23. https://doi.org/10.1080/09654319708720381 (1997).

    Google Scholar 

  • Swann, G. M. P. & Prevezer, M. A comparison of the dynamics of industrial clustering in computing and biotechnology. Res. Policy. 25 (7), 1139–1157. https://doi.org/10.1016/S0048-7333(96)00897-9 (1996).

    Google Scholar 

  • Martin, R. & Sunley, P. Deconstructing clusters: chaotic concept or policy panacea? J. Econ. Geogr. 3 (1), 5–35. https://doi.org/10.1093/jeg/3.1.5 (2003).

    Google Scholar 

  • Malmberg, A. & Power, D. True clusters: A severe case of conceptual headache. In (eds Asheim, B., Cooke, P. & Martin, R.) Clusters and Regional Development: Critical Reflections and Explorations (50–68). Routledge. (2006).

  • Chain, C. P., Santos, A. C. D., Castro, L. G. D. & Prado, J. W. D. Bibliometric analysis of the quantitative methods applied to the measurement of industrial clusters. J. Economic Surv. 33 (1), 60–84. https://doi.org/10.1111/joes.12267 (2019).

    Google Scholar 

  • Stek, P. E. Identifying Spatial technology clusters from Patenting concentrations using heat map kernel density Estimation. Scientometrics 126 (2), 911–930. https://doi.org/10.1007/s11192-020-03751-8 (2021).

    Google Scholar 

  • Komorowski, M. Identifying industry clusters: A critical analysis of the most commonly used methods. Reg. Stud. Reg. Sci. 7 (1), 92–100. https://doi.org/10.1080/21681376.2020.1733436 (2020).

    Google Scholar 

  • Sölvell, Ö., Ketels, C. & Lindqvist, G. The European cluster Observatory – EU cluster mapping and strengthening clusters in Europe. Cent. Strategy Competitiveness Stockholm School Econ. https://doi.org/10.2769/10419 (2009).

    Google Scholar 

  • Sen, Ö. & Sandal, E. K. Industrial cluster analysis in Gaziantep Province using the three-star method. East. Geographical J. 22, 39–62 (2017).

    Google Scholar 

  • Hollander, H. Methodology Report for the European Panorama of Clusters and Industrial Change and European Cluster Database (Publications Office of the European Union, 2020). https://doi.org/10.2826/466162

  • Ketels, Ketels, C. & Sölvell, Ö. Innovation Clusters in the 10 New Member States of the European Union (Publications Office of the European Union, 2007). https://doi.org/10.2769/10419

  • Sölvell, Ö., Ketels, C. & Lindqvist, G. Industrial specialization and regional clusters in the ten new EU member States. Competitiveness Review: Int. Bus. J. Incorporating J. Global Competitiveness. 18 (1/2), 104–130. https://doi.org/10.1108/10595420810874637 (2008).

    Google Scholar 

  • Republic of Turkey Undersecretariat of Foreign Trade. Cluster mapping, analysis and cluster roadmaps – synthesis report (pp. 1–46). (2009). https://izmirkumelenme.weebly.com/ulusal-yay305nlar.html, Accessed 17 Oct 2025.

  • Manzini, R. B. & Luiz, D. S. C. Cluster identification: A joint application of industry concentration analysis and exploratory Spatial data analysis (ESDA). Competitiveness Review: Int. Bus. J. 29 (4), 401–415. https://doi.org/10.1108/CR-01-2018-0001 (2019).

    Google Scholar 

  • Titova, N. Y., Pervuhin, M. A. & Baturin, G. G. Identification of regional clusters in the Russian Far East. Eur. Res. Stud. J. 20 (4A), 339–359. https://doi.org/10.35808/ersj/839 (2017).

    Google Scholar 

  • Chen, J. & Jackson, R. Regional Industry Cluster Analysis for the Potomac Highlands in West Virginia (RRI Resource Document 2018-03) (Regional Research Institute, West Virginia University, 2018).

  • Meyer, D. F. & Niyimbanira, F. Formulation and application of a multi-variable location quotient index in the Mpumalanga Province, South Africa. Local Econ. 36 (4), 273–286. https://doi.org/10.1177/02690942211049505 (2021).

    Google Scholar 

  • Campi, M., Dueñas, M. & Ciarli, T. Do creative industries enhance employment growth? Regional evidence from Colombia. Reg. Stud. 58 (3), 425–441. https://doi.org/10.1080/00343404.2023.2210620 (2024).

    Google Scholar 

  • Khoirunnisa, I., Ratih, A., Ciptawaty, U., Wahyudi, H. & Murwiyati, A. Analysis of leading sectors supporting agriculture through the LQ and shift share approaches in Sumatera. Int. J. Educ. Social Stud. Manage. 4 (3), 932–949. https://doi.org/10.52121/ijessm.v4i3.420 (2024).

    Google Scholar 

  • Çelik, E. & Sandal, E. K. The regional concentration structure of turkey’s manufacturing industry and its subsectors: A comparative location-quotient analysis for 2011–2020. Kahramanmaraş Sütçü İmam Univ. J. Social Sci. 19 (3), 1452–1468. https://doi.org/10.33437/ksusbd.1122318 (2022).

    Google Scholar 

  • Urhan, F. B. & Sandal, E. K. The Spatial pattern of turkey’s textile industry: A comparative location-quotient analysis for 2009–2015. Int. J. Geogr. Geogr. Educ. 40, 172–189. https://doi.org/10.32003/iggei.537354 (2019).

    Google Scholar 

  • Sandal, E. K. & Şen, Ö. The agglomerated industrial sectors in Gaziantep and these sector’s distribution in Turkey. Electron. Turkish Stud. 11 (8), 313–334. https://doi.org/10.7827/TurkishStudies.9612 (2016).

    Google Scholar 

  • Yamaç, B. Cluster formation in the textile sector: the case of the Turkish textile industry. J. Econ. Administrative Sci. 9 (2), 215–232. https://doi.org/10.32003/iggei.537354 (2019).

    Google Scholar 

  • Ögel, C. & Avcı, S. Analysis of gaziantep’s manufacturing industry using the concentration coefficient. Abant Social Sci. J. 23 (2), 1000–1016. https://doi.org/10.11616/asbi.1265986 (2023).

    Google Scholar 

  • Seki, İ., Arslan, M. & Bektaş, S. Cluster analysis of the TR222 Çanakkale region. Int. J. Manage. Social Stud. 5 (10), 15–28 (2018).

    Google Scholar 

  • Duran, E. Three-star analysis of the manufacturing sector in Çorum Province. East. Geographical Rev. 29 (51), 41–49. https://doi.org/10.17295/ataunidcd.1448869 (2024).

    Google Scholar 

  • Yapraklı, S. & Aslan, Ö. F. Clustering potential and local competitiveness in the provinces of the TRA1 region (Erzurum, Erzincan, Bayburt): A field study based on three-star analysis. J. Econ. Administrative Sci. 24 (2), 429–458. https://doi.org/10.53443/anadoluibfd.1115658 (2023).

    Google Scholar 

  • Karaçayır, E. Industrial clustering potential of the TR52 level 2 region. J. Political Sci. Fac. Necmettin Erbakan Univ. 6 (1), 230–243. https://doi.org/10.51124/jneusbf.2024.86 (2024).

    Google Scholar 

  • Bayraktar, F. & Sekmen, F. Investigation of potential investment topics in İzmir Province. Turkish Development Bank, Istanbul. (2012). https://www.kalkinmakutuphanesi.gov.tr/dokuman/izmir-ili-potansiyel-yatirim-konulari-arastirmasi/614 Accessed 17 Oct 2025.

  • Gül, M., Topçuoğlu, E. M. & Çetinel, S. Three-star Cluster Analysis Study of the TR82 Region (North Anatolia Development Agency. Ankara, 2014).

  • Karagüney, F. Sectoral Competitiveness Analysis of the Manufacturing Industry in the Konya-Karaman Region (Mevlana Development Agency, 2019).

  • Central Anatolia Development Agency. Leading Sectors in the TR72 Region (Central Anatolia Development Agency Publications. Kayseri, 2021).

  • Er, F. Sectoral Competitiveness Analysis of the TR71 Region (Ahiler Development Agency. Nevşehir, 2022).

  • Çakay, M. E., Ertan, Y., Toprak, İ. & Özen, M. S. Current Status Analysis of the Industry in the TRB2 Region (Eastern Anatolia Development Agency.Van, 2014).

  • Eastern Anatolia Project Regional Development Administration. Entrepreneurship and Innovation Needs Analysis and Clustering Studies (Eastern Anatolia Project Regional Development Administration. Erzurum, 2017).

  • Demirdöğen, S. Identification of sectors with clustering potential: an application to the TRA1 level 2 region. J. Social Sci. Inst. Bolu Abant İzzet Baysal Univ. 18 (4), 85–113. https://doi.org/10.11616/asbed.v18i41997.505856 (2018).

    Google Scholar 

  • Amin, M. M., Sutrisman, A. & Dwitayanti, Y. Development of star-schema model for lecturer performance in research activities. Int. J. Adv. Comput. Sci. Appl. 12 (9), 74–80. https://doi.org/10.14569/IJACSA.2021.0120909 (2021).

    Google Scholar 

  • Cai, Y., Chen, J., Fan, X. & Yu, Z. Study on the regional economic data analysis and mining platform based on OLAM. In Proceedings of the Second International Workshop on Education Technology and Computer Science (pp. 550–554). IEEE, Wuhan, China (2010).

  • Toprak, A. & Çetinyokuş, T. Using online analytical processing (OLAP) tools in determining regional industrial clustering potential. J. Reg. Dev. 01 (03), 257–270. https://doi.org/10.61138/bolgeselkalkinmadergisi.1329622 (2023).

    Google Scholar 

  • Markl, V., Ramsak, F. & Bayer, R. Improving OLAP performance by multidimensional hierarchical clustering. In Proceedings of the 1999 International Database Engineering and Applications Symposium (IDEAS ‘99) (pp. 165–177). IEEE (1999).

  • Ebrahimi, M. Knowledge extraction and analysis to evaluate the financial performance of an organization using OLAM. Int. J. Mod. Educ. Comput. Sci. 10 (12), 20–27. https://doi.org/10.5815/ijmecs.2018.12.03 (2018).

    Google Scholar 

  • Song, Y. & Ge, C. Research on the integration architecture of OLAM and OLAP. In 2011 International Conference on Electric Information and Control Engineering (pp. 1656–1659). IEEE. (2011), April.

  • Saranya, C. & Manikandan, G. A study on normalization techniques for privacy preserving data mining. Int. J. Eng. Technol. (IJET). 5 (3), 2701–2704 (2013).

    Google Scholar 

  • Oti, E. U., Olusola, M. O., Godwin, O. O. & Nwankwo, C. H. New k-means clustering method using minkowski’s distance as its metric. Inform. Technol. 4 (1), 28–41. https://doi.org/10.52589/BJCNIT-XEPSJBWX (2020).

    Google Scholar 

  • Wong, M. A. Asymptotic properties of univariate sample k-means clusters. J. Classif. 1 (1), 255–270. https://doi.org/10.1007/BF01890126 (1984).

    Google Scholar 

  • Qiu, D. & Tamhane, A. C. A comparative study of the K-means algorithm and the normal mixture model for clustering: univariate case. J. Stat. Plann. Inference. 137 (11), 3722–3740. https://doi.org/10.1016/j.jspi.2007.03.045 (2007).

    Google Scholar 

  • Wang, B., Zhou, B., Zou, M., Liu, Q., Zhao, R., Dai, M., … Wang, Y. (2023, October).Research on condition monitoring of offshore wind turbine gearbox based on K-means clustering and extreme learning machine model. In 2023 International Conference on Artificial Intelligence and Power Engineering (AIPE) (pp. 71–76). IEEE.

  • Izmir Development Agency. Izmir clustering analysis. Izmir Development Agency. (2010). https://www.kalkinmakutuphanesi.gov.tr/dokuman/izmir-kumelenme-analizi/611 Accessed 16 Oct 2025.

  • South Marmara Development Agency. TR22 (Balıkesir, Çanakkale) South Marmara Region manufacturing industry strategy and action plan. South Marmara Development Agency. (2017). https://www.kalkinmakutuphanesi.gov.tr/dokuman/guney-marmara-bolgesi-imalat-sanayi-stratejisi-ve-eylem-plani/588 Accessed 16 Oct 2025.

  • Yavan, N. Entrepreneurship and innovation needs analysis of the KOP Region. Republic of Turkey Ministry of Industry and Technology, KOP Regional Development Administration. (2018). https://www.kalkinmakutuphanesi.gov.tr/assets/upload/dosyalar/girisimcilik-ve-yenilik-ihtiyac-analizi-sonuc-ve-degerlendirme-analizi-raporu.pdf Accessed 16 Oct 2025.

  • Crawley, A., Beynon, M. & Munday, M. Making location quotients more relevant as a policy aid in regional Spatial analysis. Urban Stud. 50 (9), 1854–1869. https://doi.org/10.1177/0042098012466601 (2013).

    Google Scholar 

Continue Reading

  • Match report: Champions League, Arsenal v FC Bayern – FC Bayern Munich

    1. Match report: Champions League, Arsenal v FC Bayern  FC Bayern Munich
    2. Arsenal 3-1 Bayern Munich: Jurrien Timber, Noni Madueke & Gabriel Martinelli score as Gunners win  BBC
    3. Declan Rice cranks up volume to show he is Europe’s best player right now…

    Continue Reading

  • France has made the fight against trafficking in persons a priority

    France has made the fight against trafficking in persons a priority

    Mr. President,

    Distinguished colleagues,

    France welcomes the adoption by consensus of the political declaration on the implementation of the UN Global Plan of Action to Combat Trafficking in Persons.

    I have two key messages, in…

    Continue Reading

  • 18 Hidden iOS 26 Features Worth Trying Today

    18 Hidden iOS 26 Features Worth Trying Today

    Apple’s iOS 26 has been here for a few months now, with an updated look and feel that sets it apart from iOS 18. The liquid glass design update takes center stage, delivering a colorful look and feel. Of course there are also plenty of new…

    Continue Reading

  • David Luiz, 38, scores 1st Champions League goal since 2017

    David Luiz, 38, scores 1st Champions League goal since 2017

    At age 38, David Luiz scored his first Champions League goal in more than eight years Wednesday.

    The Brazilian defender, playing for Pafos and still sporting his trademark shock of curly hair, soared at a corner to guide a…

    Continue Reading