Liu, Y., James, J. Q., Kang, J., Niyato, D. & Zhang, S. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet Things J. 7 (8), 7751–7763. https://doi.org/10.1109/JIOT.2020.2974820 (2020).
Peng, H. et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578, 401–416. https://doi.org/10.1016/j.ins.2021.06.053 (2021).
Djenouri, Y., Belhadi, A., Srivastava, G. & Lin, J. C. W. Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting.Future Generation Comput. Syst. 139: 100–108. https://doi.org/10.1016/j.future.2022.09.032. (2023).
Williams, B. M. & Hoel, L. A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation Engineering 129(6), 664–672. https://doi.org/10.1061/(ASCE)0733-947X (2003).
Zhang, Q., Li, C., Su, F. & Li, Y. Spatiotemporal residual graph attention network for traffic flow forecasting. IEEE Internet Things J. 10 (13), 11518–11532. https://doi.org/10.1109/JIOT.2023.3248874 (2023).
Yu, B., Yin, H. & Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.Proceedings of the 27th International Joint Conference on Artificial Intelligence. 3634–3640. https://doi.org/10.24963/ijcai.2018/505 (2018).
Li, Y., Yu, R., Shahabi, C. & Liu, Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. InternationalConference on Learning Representations (ICLR 2018). Vancouver, Canada. https://doi.org/10.48550/arXiv.1707.01926 (2018).
Cai, L., Janowicz., K., Mai., G., Yan., B. & Zhu, R. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS. 24 (3), 736–755. https://doi.org/10.1111/tgis.12644 (2020).
Liu, H. et al. STAEformer: Spatio-Temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting. Proc. 32nd ACM Int. Conf. Inform. Knowl. Manage. (CIKM). 4125-4129 https://doi.org/10.48550/arXiv.2308.10425 (2023).
Kazemi, S. M. et al. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res. 21 (70), 1–73 (2020).
Zhao, L. et al. T-GCN: A Temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21 (9), 3848–3858. https://doi.org/10.1109/TITS.2019 (2019).
Peng, H. et al. Spatial Temporal incidence dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 521, 277–290. https://doi.org/10.1016/j.ins.2020.02.006 (2020).
Vaswani, A. et al. Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017).
Cai, L., Janowicz, K., Mai, G., Yan, B. & Zhu, R. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS. 24 (3), 736–755. https://doi.org/10.1111/tgis.12607 (2020).
Zheng, C. et al. Spatio-temporal joint graph convolutional networks for traffic forecasting. IEEE Trans. Knowl. Data Eng. 36 (1), 372–385. https://doi.org/10.1109/TKDE.2022 (2023).
Han, L., Du, B., Sun, L., Fu, Y. & Lv, Y. and H. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 547–555 https://doi.org/10.1145/3447548.3467118 (2021).
Kong, J., Fan, X., Zuo, M., Deveci, M., Zhong, K. & X., and ADCT-Net: adaptive traffic forecasting neural network via dual-graphic cross-fused transformer. Inform. Fusion. 103, 102122. https://doi.org/10.1016/j.inffus.2023.102122 (2024).
Wu, C. H., Ho, J. M. & Lee, D. T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5 (4), 276–281. https://doi.org/10.1109/TITS.2004.837813 (2004).
Liu, A. & Zhang. Y Spatial–Temporal dynamic graph convolutional network with interactive learning for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25 (7), 7645–7660. https://doi.org/10.1109/TITS.2024.3362145 (2024).
Wu, Y., Tan, H., Qin, L., Ran, B. & Jiang, Z. A hybrid deep learning based traffic flow prediction method and its Understanding. Transp. Res. Part. C: Emerg. Technol. 90, 166–180. https://doi.org/10.1016/j.trc.2018.03.001 (2018).
Li, M. & Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35(5), 4189–4196 https://doi.org/10.1609/aaai.v35i5.16550 (2021).
Fang, Z., Long, Q. & Song, G. and K. Spatial-temporal graph ODE networks for traffic flow forecasting. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining: 364–373. (2021). https://doi.org/10.1145/3447548.3467141
Xu, Y. et al. Generic dynamic graph convolutional network for traffic flow forecasting. Inform. Fusion. 100, 101946. https://doi.org/10.1016/j. inffus.2023.101946 (2023).
Fang, Y., Zhao, F., Qin, Y., Luo, H. & Wang, C. Learning all dynamics: traffic forecasting via locality-aware spatio-temporal joint transformer. IEEE Trans. Intell. Transp. Syst. 23 (12), 23433–23446. https://doi.org/10.1109/TITS.2022 (2022).
Lin, L., Li, W., Bi, H. & Qin, L. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms. IEEE Intell. Transp. Syst. Mag. 14 (2), 197–208. https://doi.org/10.1109/MITS.2021.3058034 (2021).
Guo, S., Lin, Y., Wan, H., Cong, G. & L., and Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34 (11), 5415–5428. https://doi.org/10.1109/TKDE.2021.3081562 (2021).
Zhu, J. et al. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 23 (9), 15055–15065. https://doi.org/10.1109/TITS.2021.3137177 (2022).
Kong, X., Wang, K., Hou, M., Karmakar, F., Li, J. & G., and Exploring human mobility for multi-pattern passenger prediction: A graph learning framework. IEEE Trans. Intell. Transp. Syst. 23 (9), 16148–16160. https://doi.org/10.1109/TITS.2021 (2022).
Chen, Y., Segovia, I. & Gel, Y. R. Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting. Proceedings of the 38th International Conference on Machine Learning 139: 1684–1694. (2021).
Lee, K. & Rhee, W. DDP-GCN: Multi-graph convolutional network for Spatiotemporal traffic forecasting. Transp. Res. Part. C: Emerg. Technol. 134, 103466. https://doi.org/10.1016/j.trc.2021.103466 (2022).
Shin, Y. & Yoon, Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 23 (3), 2082–2092. https://doi.org/10.1109/TITS.2021 (2022).
Bai, L., Yao, L., Li, C., Wang, X. & Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020).
Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. Graph WaveNet for deep spatial-temporal graph modeling. Proceedings of the 28th International Joint Conference on Artificial Intelligence: 1907–1913. (2019). https://doi.org/10.24963/ijcai.2019/264
Wang, W. D. P. K. Spatial–Temporal graph attention gated recurrent transformer network for traffic flow forecasting. IEEE Internet Things J. 11 (8), 14267–14281. https://doi.org/10.1109/JIOT.2023.3340182 (2024).
Shin, Y. & Yoon. Y PGCN: progressive graph convolutional networks for Spatial-Temporal traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25 (7), 7633–7644. https://doi.org/10.1109/TITS.2024.3349565 (2024).
Fang, Y. et al. Efficient large-scale traffic forecasting with transformers: A Spatial data management perspective. KDD ‘25: Proc. 31st ACM SIGKDD Conf. Knowl. Discovery Data Min. 307-317 https://doi.org/10.1145/3690624.3709177 (2024).
Fang, Y. et al. Unraveling spatio-temporal foundation models via the pipeline lens: A comprehensive review. Inf. Fusion. 115, 102346. https://doi.org/10.48550/arXiv.2506.01364 (2025).
Yang., S., Wu., Q., Wang., Y. & Lin, T. SSGCRTN: A space-specific graph convolutional recurrent transformer network for traffic prediction. Appl. Intell. 54 (22), 11978–11994. https://doi.org/10.1007/s10489-024-05815-1 (2024).
Yang., S., Huang., Z., Wu., Q. & Zhuo, Z. MSTDFGRN: A multi-view spatio-temporal dynamic fusion graph recurrent network for traffic flow prediction. Comput. Electr. Eng. 123, 110046. https://doi.org/10.1016/j.compeleceng.2024.110046 (2025).
Yang, S., Wu, Q., Li, Z. & Wang, K. PSTCGCN: principal spatio-temporal causal graph convolutional network for traffic flow prediction. Neural Comput. Appl. 1-14, https://doi.org/10.1007/s00521-024-10769-6 (2024).
Yang., S., Wu., Q., Li., M. & Sun, Y. Temporal identity interaction dynamic graph convolutional network for traffic forecasting. IEEE Internet Things J. 12 (11), 15057–15072. https://doi.org/10.1109/JIOT.2025.3503328 (2025).
Yang., S. & Wu, Q. SDSINet: A Spatiotemporal dual-scale interaction network for traffic prediction. Appl. Soft Comput. 112892. https://doi.org/10.1016/j.asoc.2025.112892 (2025).
Yang., S. & Wu, Q. MTEGCRN: Multi-scale Temporal enhanced graph convolutional recurrent network for traffic prediction. Neurocomputing 131064 https://doi.org/10.1016/j.neucom.2025.131064 (2025).
Yang., S., Wu., Q., Huang., Z. & Zhuo, Z. General Decoupled Graph Convolutional Recurrent Network for Traffic Prediction. IEEE Sensors J. (2025).
Yang., S., Wu., Q. & Li, M. Decoupled Multi-Spatio-Temporal Fusion Graph Convolutional Recurrent Network for Traffic Prediction. Eng. Appl. Artif. Intell. 163: 112956. https://doi.org/10.1016/j.engappai.2025.112956. (2025).
Guo, S., Lin, Y., Feng, N., Song, C. & Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 33(01): 922–929. (2019). https://doi.org/10.1609/aaai.v33i01. 3301922.
Lan, S., Huang, M. Y., Wang, W., Yang, W. & Li, H. P. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. in: International Conference on Machine Learning, PMLR, 11906–11917. (2022).
Li, J. D. S. J. W. R. & Huang, Y. Y., Yang. Y.-B. Trafformer: unify time and space in traffic prediction. in: Proceedings of the AAAI Conference on Artificial Intelligence, 37(7): 8114–8122. (2023).
Shao, Z., Zhang, Z., Wang, F., Wei, W. & Xu, Y. Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. Proceedings of the 31st ACM International Conference on Information & Knowledge Management: 4454–4458. (2022). https://doi.org/10.1145/3511808.3557410
Cui, Z., Henrickson, K., Ke, R. & Wang, Y. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 21 (11), 4883–4894. https://doi.org/10.1109/TITS.2019.2950416 (2020).
Pan, Z. et al. Spatio-temporal meta learning for urban traffic prediction. IEEE Trans. Knowl. Data Eng. 34 (3), 1462–1476. https://doi.org/10.1109/TKDE.2020.2989138 (2020).
Chen, C., Liu, Y., Chen, L. & Zhang, C. Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting. IEEE Trans. Neural Networks Learn. Syst. 34 (10), 6913–6925. https://doi.org/10.1109/TNNLS.2022.3156673 (2022).
Al-Huthaif, R., Li, T., Al-Huda, Z. & Li, C. FedAGAT: Real-time traffic flow prediction based on federated community and adaptive graph attention network. Inf. Sci. 667 (2024), 120482. https://doi.org/10.1016/j.ins.2024.120482 (2024).
Lai, Q. & Chen, P. LEISN: A long explicit-implicit spatio-temporal network for traffic flow forecasting. Expert Syst. Appl. 245 (2024), 123139. https://doi.org/10.1016/j.eswa.2024.123139 (2024).
Wang., R., Xi., L., Ye., J., Zhang., F. & Xu, X. Y. L. Adaptive Spatio-Temporal relation based transformer for traffic flow prediction. IEEE Trans. Veh. Technol. 74 (2), 2220–2230. https://doi.org/10.1109/TVT.2024.3390997 (2025).
Fan., J., Weng., W., Chen., Q., Wu., H. & Wu, J. Pdg2seq: periodic dynamic graph to sequence model for traffic flow prediction. Neural Netw. 183, 106941. https://doi.org/10.1016/j.neunet.2024.106941 (2025).
Wu, B. et al. DT-CTFP: 6 g-enabled digital twin collaborative traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 26 (10), 18129–18144. https://doi.org/10.1109/TITS.2025.3582356 (2025).





