Woehrer, A., Bauchet, L. & Barnholtz-Sloan, J. S. Glioblastoma survival: Has it improved? Evidence from population-based studies. Curr. Opin. Neurol. 27, 666–674. https://doi.org/10.1097/wco.0000000000000144 (2014).
Google Scholar
Kan, L. K. et al. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol. Open 2, e000069. https://doi.org/10.1136/bmjno-2020-000069 (2020).
Google Scholar
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).
Google Scholar
Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740. https://doi.org/10.1200/jco.2008.19.8721 (2009).
Google Scholar
Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745. https://doi.org/10.1200/jco.2008.16.3055 (2009).
Google Scholar
Cohen, M. H., Shen, Y. L., Keegan, P. & Pazdur, R. FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14, 1131–1138. https://doi.org/10.1634/theoncologist.2009-0121 (2009).
Google Scholar
Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400. https://doi.org/10.1038/nrd1381 (2004).
Google Scholar
Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722. https://doi.org/10.1056/NEJMoa1308345 (2014).
Google Scholar
Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708. https://doi.org/10.1056/NEJMoa1308573 (2014).
Google Scholar
Schmainda, K. M. et al. Value of dynamic contrast perfusion MRI to predict early response to bevacizumab in newly diagnosed glioblastoma: Results from ACRIN 6686 multicenter trial. Neuro Oncol. 23, 314–323. https://doi.org/10.1093/neuonc/noaa167 (2021).
Google Scholar
Xu, L. et al. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci. Transl. Med. 6, 242ra284-242ra284 (2014).
Google Scholar
Macarulla, T. et al. Atezolizumab plus chemotherapy with or without bevacizumab in advanced biliary tract cancer: Clinical and biomarker data from the randomized phase II IMbrave151 trial. J. Clin. Oncol. 43, 545–557 (2024).
Google Scholar
Loureiro, L. V. M. et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. Surg. Exp. Pathol. 3, 1–8 (2020).
Google Scholar
Jin, K., Qian, C., Lin, J. & Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 13, 1099811. https://doi.org/10.3389/fonc.2023.1099811 (2023).
Google Scholar
Xu, L. & Croix, B. S. Improving VEGF-targeted therapies through inhibition of COX-2/PGE2 signaling. Mol. Cell Oncol. 1, e969154. https://doi.org/10.4161/23723548.2014.969154 (2014).
Google Scholar
Shono, T., Tofilon, P. J., Bruner, J. M., Owolabi, O. & Lang, F. F. Cyclooxygenase-2 expression in human gliomas: Prognostic significance and molecular correlations. Cancer Res. 61, 4375–4381 (2001).
Google Scholar
Zhang, F., Chu, J. & Wang, F. Expression and clinical significance of cyclooxygenase 2 and survivin in human gliomas. Oncol. Lett. 14, 1303–1308. https://doi.org/10.3892/ol.2017.6281 (2017).
Google Scholar
Wang, X. et al. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis. J. Neurooncol. 125, 277–285. https://doi.org/10.1007/s11060-015-1919-6 (2015).
Google Scholar
Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011–1027. https://doi.org/10.1200/jco.2005.06.081 (2005).
Google Scholar
Qiu, J., Shi, Z. & Jiang, J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov. Today 22, 148–156. https://doi.org/10.1016/j.drudis.2016.09.017 (2017).
Google Scholar
Lu-Emerson, C. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J. Clin. Oncol. 33, 1197–1213. https://doi.org/10.1200/jco.2014.55.9575 (2015).
Google Scholar
Motomura, K. et al. Cost of medical care for malignant brain tumors at hospitals in the Japan clinical oncology group brain-tumor study group. Jpn. J. Clin. Oncol. 54, 1123–1131. https://doi.org/10.1093/jjco/hyae116 (2024).
Google Scholar
Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. & Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell Physiol. 234, 5683–5699. https://doi.org/10.1002/jcp.27411 (2019).
Google Scholar
Lin, P. C., Lin, Y. J., Lee, C. T., Liu, H. S. & Lee, J. C. Cyclooxygenase-2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol. Lett. 6, 733–739 (2013).
Google Scholar
Shi, C. et al. High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int. J. Oncol. 53, 1138–1148. https://doi.org/10.3892/ijo.2018.4462 (2018).
Google Scholar
Kambe, A. et al. The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment. J. Neurooncol. 166, 175–183. https://doi.org/10.1007/s11060-023-04550-w (2024).
Google Scholar
Lombardi, F. et al. Cyclooxygenase-2 upregulated by temozolomide in glioblastoma cells is shuttled in extracellular vesicles modifying recipient cell phenotype. Front. Oncol. 12, 933746. https://doi.org/10.3389/fonc.2022.933746 (2022).
Google Scholar
Lombardi, F. et al. Up-regulation of cyclooxygenase-2 (COX-2) expression by temozolomide (TMZ) in human glioblastoma (GBM) cell lines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031545 (2022).
Google Scholar
Schmainda, K. M. et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol. 16, 880–888. https://doi.org/10.1093/neuonc/not216 (2014).
Google Scholar
Leu, K. et al. Hypervascular tumor volume estimated by comparison to a large-scale cerebral blood volume radiographic atlas predicts survival in recurrent glioblastoma treated with bevacizumab. Cancer Imaging 14, 31. https://doi.org/10.1186/s40644-014-0031-z (2014).
Google Scholar
Kickingereder, P. et al. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol. 17, 1139–1147. https://doi.org/10.1093/neuonc/nov028 (2015).
Google Scholar
Liu, T. T. et al. Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro Oncol. 19, 997–1007. https://doi.org/10.1093/neuonc/now270 (2017).
Google Scholar
Bennett, I. E. et al. Early perfusion MRI predicts survival outcome in patients with recurrent glioblastoma treated with bevacizumab and carboplatin. J. Neurooncol. 131, 321–329. https://doi.org/10.1007/s11060-016-2300-0 (2017).
Google Scholar
Schmainda, K. M. et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: Results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol. 17, 1148–1156. https://doi.org/10.1093/neuonc/nou364 (2015).
Google Scholar
Alves, B. et al. High VEGFA expression is associated with improved progression-free survival after bevacizumab treatment in recurrent glioblastoma. Cancers https://doi.org/10.3390/cancers15082196 (2023).
Google Scholar
Rawat, C. et al. Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci. Rep. 10, 2546. https://doi.org/10.1038/s41598-020-59259-x (2020).
Google Scholar
Est-Witte, S. E. et al. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater. 113, 279–288. https://doi.org/10.1016/j.actbio.2020.06.042 (2020).
Google Scholar
Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972. https://doi.org/10.1200/jco.2009.26.3541 (2010).
Google Scholar