Wu, X., Liang, L., Shi, Y. & Fomel, S. FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. GEOPHYSICS 84, IM35–IM45 (2019).
Google Scholar
Suping Peng. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining. J. China Coal Soc. 45, 2331–2345 (2020).
Google Scholar
Mousavi, S. M. & Beroza, G. C. Deep-learning seismology. Science 377, eabm4470 (2022).
Google Scholar
Lin, P., Peng, S., Zhao, J., Cui, X. & Du, W. Accurate diffraction imaging for detecting small-scale geologic discontinuities. GEOPHYSICS 83, S447–S457 (2018).
Google Scholar
Zou, G., Ren, K., Sun, Z., Peng, S. & Tang, Y. Fault interpretation using a support vector machine: A study based on 3D seismic mapping of the Zhaozhuang coal mine in the Qinshui Basin, China. J. Appl. Geophys. 171, 103870 (2019).
Google Scholar
Ren, K. et al. Fault identification based on the KPCA-GPSO-SVM algorithm for seismic attributes in the Sihe Coal Mine, Qinshui Basin, China. Interpretation 1–58 (2022). https://doi.org/10.1190/int-2022-0039.1
Yang, Y. et al. Feature Extraction, Selection, and K-Nearest neighbors algorithm for shark behavior classification based on imbalanced dataset. IEEE Sens. J. 21, 6429–6439 (2021).
Google Scholar
Ren, K. et al. Fault identification and reliability evaluation using an SVM model based on 3-D seismic data volume. Geophys. J. Int. 234, 755–768 (2023).
Google Scholar
Zuo, R. & Carranza, E. J. M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 37, 1967–1975 (2011).
Google Scholar
Han, C. et al. Intelligent fault prediction with wavelet-SVM fusion in coal mine. Comput. Geosci. 194, 105744 (2025).
Google Scholar
Xiong, W. et al. Seismic fault detection with convolutional neural network. GEOPHYSICS 83, O97–O103 (2018).
Google Scholar
Pochet, A., Diniz, P. H. B., Lopes, H. & Gattass, M. Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps. IEEE Geosci. Remote Sens. Lett. 16, 352–356 (2019).
Google Scholar
Di, H., Li, Z., Maniar, H. & Abubakar, A. Seismic stratigraphy interpretation by deep convolutional neural networks: A semisupervised workflow. GEOPHYSICS 85, WA77–WA86 (2020).
Google Scholar
Geng, Z. & Wang, Y. Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification. Nat. Commun. 11, 3311 (2020).
Google Scholar
Zhang, G., Lin, C. & Chen, Y. Convolutional neural networks for microseismic waveform classification and arrival picking. GEOPHYSICS 85, WA227–WA240 (2020).
Google Scholar
Yu, S. & Ma, J. Deep learning for geophysics: current and future trends. Rev. Geophys. 59, e2021RG000742 (2021).
Google Scholar
Zou, G., Liu, H., Ren, K., Deng, B. & Xue, J. Automatic recognition of faults in mining areas based on convolutional neural network. Energies 15, 3758 (2022).
Google Scholar
Deng, B. et al. An approach of 2D convolutional neural network–based seismic data fault interpretation with linear annotation and pixel thinking. Geophys. Prospect. 72, 3350–3370 (2024).
Google Scholar
An, Y. et al. Current state and future directions for deep learning based automatic seismic fault interpretation: A systematic review. Earth-Sci. Rev. 243, 104509 (2023).
Google Scholar
An, Y. et al. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Comput. Geosci. 153, 104776 (2021).
Google Scholar
Kay, S. M. & Marple, S. L. Spectrum analysis—A modern perspective. Proc. IEEE 69, 1380–1419 (1981).
Hubral, P., Tygel, M. & Schleicher, J. Seismic image waves. Geophys. J. Int. 125, 431–442 (1996).
Google Scholar
Cao, S. & Chen, X. The second-generation wavelet transform and its application in denoising of seismic data. Appl. Geophys. 2, 70–74 (2005).
Google Scholar
Neut, J. V. D., Sen, M. K. & Wapenaar, K. Seismic reflection coefficients of faults at low frequencies: a model study. Geophys. Prospect. 56, 287–292 (2008).
Google Scholar
Liu, W., Wang, Z. & Cao, S. Stratigraphic interfaces identification based on wavelet transform. SEG Tech. Program. Expanded Abstracts. 2012, 1–5. https://doi.org/10.1190/segam2012-0247.1 (2012). Society of Exploration Geophysicists.
Google Scholar
Botter, C., Cardozo, N., Qu, D., Tveranger, J. & Kolyukhin, D. Seismic characterization of fault facies models. Interpretation 5, SP9–SP26 (2017).
Google Scholar
Yeh, H. G., Sim, S. & Bravo, R. J. Wavelet and denoising techniques for Real-Time HIF detection in 12-kV distribution circuits. IEEE Syst. J. 13, 4365–4373 (2019).
Google Scholar
Li, X., Chen, S., Wang, E. & Li, Z. Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response. Eng. Fail. Anal. 124, 105396 (2021).
Google Scholar
Li, X., Chen, S., Liu, S. & Li, Z. AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform. J. Cent. South. Univ. 28, 1843–1856 (2021).
Google Scholar
Li, X. et al. Rock burst monitoring by integrated microseismic and electromagnetic radiation methods. Rock. Mech. Rock. Eng. 49, 4393–4406 (2016).
Google Scholar
Sang, E. F. & Yeh, H. G. The use of transform domain LMS algorithm to adaptive equalization. in Proceedings of IECON ’93–19th Annual Conference of IEEE Industrial Electronics –2064 vol.3 2061. https://doi.org/10.1109/IECON.1993.339393 (1993).
Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988).
Google Scholar
Larsonneur, J. L. & Morlet, J. Wavelets and seismic interpretation. In Wavelets (eds Combes, J. M. et al.) 126–131 (Springer, 1990). https://doi.org/10.1007/978-3-642-75988-8_7.
Google Scholar
Chakraborty, A. & Okaya, D. Frequency-time decomposition of seismic data using wavelet-based methods. GEOPHYSICS 60, 1906–1916 (1995).
Google Scholar
Graps, A. An introduction to wavelets. IEEE Comput. Sci. Eng. 2, 50–61 (1995).
Google Scholar
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
Google Scholar
Singh, G. K. & Sa’ad Ahmed, S. A. K. Vibration signal analysis using wavelet transform for isolation and identification of electrical faults in induction machine. Electr. Power Syst. Res. 68, 119–136 (2004).
Google Scholar
Osowski, S. & Garanty, K. Forecasting of the daily meteorological pollution using wavelets and support vector machine. Eng. Appl. Artif. Intell. 20, 745–755 (2007).
Google Scholar
Gumus, E., Kilic, N., Sertbas, A. & Ucan, O. N. Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Syst. Appl. 37, 6404–6408 (2010).
Google Scholar
Liu, W., Cao, S. & Chen, Y. Seismic Time–Frequency analysis via empirical wavelet transform. IEEE Geosci. Remote Sens. Lett. 13, 28–32 (2016).
Google Scholar
Wang, Z., Zhang, B., Gao, J., Wang, Q. & Liu, Q. H. Wavelet transform with generalized beta wavelets for seismic time-frequency analysis. Geophysics 82, O47–O56 (2017).
Google Scholar
Liu, S. et al. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics. Energy 275, 127470 (2023).
Google Scholar
Li, H. et al. Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load. Constr. Build. Mater. 399, 132599 (2023).
Google Scholar
Liu, N. et al. Seismic data reconstruction via Wavelet-Based residual deep learning. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022).
Google Scholar
Shen, S., Li, H., Chen, W., Wang, X. & Huang, B. Seismic fault interpretation using 3-D scattering wavelet transform CNN. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022).
Google Scholar
Jiang, J., Stankovic, V., Stankovic, L., Parastatidis, E. & Pytharouli, S. Microseismic event classification with Time-, Frequency-, and Wavelet-Domain convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2023).
Google Scholar
Fujieda, S., Takayama, K. & Hachisuka, T. Wavelet Convolutional Neural Networks. Preprint at https://doi.org/10.48550/arXiv.1805.08620 (2018).
Yeh, H. G., Corona, A. & Ramirez, T. Data-Driven Adaptive Modulation Classification Systems. in IEEE International systems Conference (SysCon) 1–7 (2025). https://doi.org/10.1109/SysCon64521.2025.11014808 (2025).
Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017).
Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for Simplicity: The All Convolutional Net. Preprint at (2015). https://doi.org/10.48550/arXiv.1412.6806
Zhang, L. et al. Signal modulation classification based on deep learning and Software-Defined radio. IEEE Commun. Lett. 25, 2988–2992 (2021).
Google Scholar
Huang, G., Liu, Z., Pleiss, G., van der Maaten, L. & Weinberger, K. Q. Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8704–8716 (2022).
Google Scholar
Hsiao, T. Y., Chang, Y. C., Chou, H. H. & Chiu, C. T. Filter-based deep-compression with global average pooling for convolutional networks. J. Syst. Archit. 95, 9–18 (2019).
Google Scholar
Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE. 86, 2278–2324 (1998).
Google Scholar
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM. 60, 84–90 (2017).
Google Scholar
Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Preprint at (2015). https://doi.org/10.48550/arXiv.1409.1556
Mallat, S. A Wavelet Tour of Signal Processing.