Alotaibi, A. M., Ismail, A. F. & Aziman, E. S. Ultra-effective modified clinoptilolite adsorbent for selective thorium removal from radioactive residue. Sci. Rep. 13, 1–21 (2023).
Google Scholar
Aziman, E. S. & Ismail, A. F. Frontier looking of rare-earth processed residue as sustainable thorium resources: an insight into chemical composition and separation of thorium. Prog Nucl. Energy. 128, 103471 (2020).
Google Scholar
Yussuf, N. M., Ismail, A. F., Aziman, E. S., Mohamed, N. A. & Teridi, M. A. M. Innovative g-C3N4/AX composite electrode for effective thorium elimination from aqueous solutions. Sep. Purif. Technol. 330, 125205 (2024).
Google Scholar
Salehuddin, A. H. J. M., Ismail, A. F., Bahri, C. N., Aniza, C. Z. & Aziman, E. S. Economic analysis of thorium extraction from monazite. Nucl. Eng. Technol. 51, 631–640 (2019).
Google Scholar
Toit, M. H. D., Van Niekerk, F. & Amirkhosravi, S. Review of thorium-containing fuels in LWRs. Prog Nucl. Energy. 170, 105136 (2024).
Google Scholar
Humelnicu, D., Dinu, M. V. & Drǎgan, E. S. Adsorption characteristics of UO22 + and Th4 + ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J. Hazard. Mater. 185, 447–455 (2011).
Google Scholar
Krūmiņš, J. & Kļaviņš, M. Investigating the potential of nuclear energy in achieving a Carbon-Free energy future. Energies 16, 1–31 (2023).
Google Scholar
Reijonen, H. M., Alexander, W. R. & Norris, S. Resilience in knowledge management – the case of natural analogues in radioactive waste management. Process. Saf. Environ. Prot. 180, 205–222 (2023).
Google Scholar
IAEA. Radioactive Waste Management Solutions for a Sustainable Future. in Proc. an Int. Conf. Vienna, Austria, 1–5 Novemb. 2021 1–5. International Atomic Energy Agency, (2023).
Chu, E. W. & Karr, J. R. Ref. Modul Life Sci. 1–22 (Elsevier, doi:https://doi.org/10.1016/b978-0-12-809633-8.02380-3 (2017).
Yu, T. H. et al. Life cycle assessment of environmental impacts and energy demand for capacitive Deionization technology. Desalination 399, 53–60 (2016).
Google Scholar
Vahidi, E. & Zhao, F. Environmental life cycle assessment on the separation of rare Earth oxides through solvent extraction. J. Environ. Manage. 203, 255–263 (2017).
Google Scholar
Wang, X. et al. Electrochemical behavior of Th(IV) and its electrodeposition from ThF4-LiCl-KCl melt. Electrochim. Acta. 196, 286–293 (2016).
Google Scholar
Liu, Y. L. et al. Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochim. Acta. 158, 277–286 (2015).
Google Scholar
Al-Areqi, W. M., Bahri, C. N. A. C. Z., Majid, A. A. & Sarmani, S. Separation and radiological impact assessment of thorium in Malaysian monazite processing. Malaysian J. Anal. Sci. 20, 770–776 (2016).
Google Scholar
Al-Areqi, W. M., Bahri, C. N. A. C. Z., Majid, A. A. & Sarmani, S. Solvent extraction of thorium from rare Earth elements in monazite thorium concentrate. Malaysian J. Anal. Sci. 21, 1250–1256 (2017).
Google Scholar
Shilpa, A. S., Thangadurai, T. D., Bhalerao, G. M. & Maji, S. Tailor-designed carbon-based novel fluorescent architecture for nanomolar detection of radioactive elements U(VI) and Th(IV) in pH ± 5.0. Talanta 272, 125783 (2024).
Google Scholar
Corradetti, S. et al. Effect of graphite and graphene oxide on thorium carbide microstructural and thermal properties. Sci. Rep. 11, 1–11 (2021).
Google Scholar
Yussuf, N. M., Ismail, A. F., Mohamed, N. A. & Teridi, M. A. M. Photocatalytic Th(IV) removal: unleashing the potential of amidoxime-modified graphitic carbon nitride photocatalyst. Mater. Lett. 357, 135771 (2024).
Google Scholar
Iskandar, B. T., Ismail, A. F., Aziman, E. S. & Ahmad, S. Advancing towards technology readiness: Continuous-flow electrosorption for thorium separation from rare Earth processing by-products. Nucl. Eng. Technol. https://doi.org/10.1016/j.net.2024.06.023 (2024).
Google Scholar
Mohamed, N. A., Ismail, A. F., Safaei, J., Johan, M. R. & Teridi, M. A. M. A novel photoanode based on thorium oxide (ThO2) incorporated with graphitic carbon nitride (g-C3N4) for photoelectrochemical water splitting. Appl. Surf. Sci. 569, 151043 (2021).
Google Scholar
Aziman, E. S. & Ismail, A. F. Rapid selective removal of thorium via electrosorption towards efficiently managing rare-earth extraction residue. J. Environ. Chem. Eng. 9, 105478 (2021).
Google Scholar
Lima, F. M., Lovon-Canchumani, G. A., Sampaio, M. & Tarazona-Alvarado, L. M. Life cycle assessment of the production of rare Earth oxides from a Brazilian ore. Procedia CIRP. 69, 481–486 (2018).
Google Scholar
Raj, D. & Kannan, U. Analysis for the use of thorium based fuel in LWRs. Ann. Nucl. Energy. 174, 109162 (2022).
Google Scholar
Liu, X. et al. Efficient and selective capture of thorium ions by a covalent organic framework. Nat. Commun. 14, 1–10 (2023).
Google Scholar
Frischknecht, R. et al. Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int. J. Life Cycle Assess. 21, 429–442 (2016).
Google Scholar
Grout, L., Hales, S., French, N. & Baker, M. G. A review of methods for assessing the environmental health impacts of an agricultural system. Int J. Environ. Res. Public. Health 15(7), 1315 (2018).
Google Scholar
Godinaud, J. et al. Life cycle assessment of an aquifer thermal energy storage system: influence of design parameters and comparison with conventional systems. Geothermics 120, 102996 (2024).
Google Scholar
Weisser, D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32, 1543–1559 (2007).
Google Scholar
Zhao, E., May, E., Walker, P. D. & Surawski, N. C. Emissions life cycle assessment of charging infrastructures for electric buses. Sustain. Energy Technol. Assessments. 48, 101605 (2021).
Google Scholar
Ashley, S. F., Fenner, R. A., Nuttall, W. J. & Parks, G. T. Life-cycle impacts from novel thorium-uranium-fuelled nuclear energy systems. Energy Convers. Manag. 101, 136–150 (2015).
Google Scholar
Koltun, P. & Klymenko, V. Cradle-to-gate life cycle assessment of the production of separated mix of rare Earth oxides based on Australian production route. Min. Min. Depos. 14, 1–15 (2020).
Google Scholar
Bicer, Y. & Dincer, I. Life cycle assessment of nuclear-based hydrogen and ammonia production options: A comparative evaluation. Int. J. Hydrogen Energy. 42, 21559–21570 (2017).
Google Scholar
Browning, G., Northey, S., Haque, N., Bruckard, W. & Cooksey, M. Life cycle assessment of rare earth production from monazite. TMS Annu. Meet https://doi.org/10.1002/9781119275039.ch12 (2016).
Google Scholar
Rahmat, M. A. et al. The impact of unregulated industrial tin-tailing processing in malaysia: Past, present and way forward. Resour. Policy. 78, 102864 (2022).
Google Scholar
Lynas Radiological impact assessmant of Lynas advanced materials plant – Quarterly Report. (2011).
Akhtar, N. et al. Particle size distribution and composition of soil sample analysis in a single pumping well using a scanning electron microscope coupled with an energy dispersive X-ray. Water 15, 1–20 (2023).
Google Scholar
Wattier, B. D., Matinez, N. E., Carbajales-Dale, M. & Shuller-Nickles, L. C. Use of life cycle assessment (LCA) to advance optimisation of radiological protection and safety. J. Radiol. Prot. 43, 031514 (2023).
Google Scholar
Søndergaard, G. L. & Abstract, M. Owsianiak in Life Cycle Assess. Theory Pract. (eds. Hauschild, M. Z., Rosenbaum, R. K. & Olsen, S. I.) 1–1216Springer Berlin Heidelberg, (2017). https://doi.org/10.1007/978-3-319-56475-3
ISO 14044. Environmental management: life cycle assessment; principles and framework. (International Organization for Standardization, 2006). (2006).
ISO 14040. Environmental management systems: life cycle assessment; principles and framework. (2014). at (2014). http://publications.apec.org/publication-detail.php?pub_id=453
Navarro, J. & Zhao, F. Life-cycle assessment of the production of rare-earth elements for energy applications: A review. Front. Energy Res. 2, 1–17 (2014).
Google Scholar
Gibon, T. & Menacho, Á. H. Parametric life cycle assessment of nuclear power for simplified models. Environ. Sci. Technol. 57, 14194–14205 (2023).
Google Scholar
Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).
Google Scholar
Yussuf, N. M., Ismail, A. F., Rahmat, M. A. & Mohamed, N. A. Electrosorption-driven selective thorium removal from radioactive wastewater with phosphate – Incorporated g-C3N4 electrode. J. Environ. Chem. Eng. 12, 113440 (2024).
Google Scholar
Aziman, E. S., Ismail, A. F., Muttalib, N. A. & Hanifah, M. S. Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume. Nucl. Eng. Technol. 53, 2926–2936 (2021).
Google Scholar
Hernandez, P., Oregi, X., Longo, S. & Cellura, M. In Handb. energy Effic. Build. a life cycle approach 207–261 (Elsevier Inc., 2018). https://doi.org/10.1016/B978-0-12-812817-6.00010-3
Pfister, S., Koehler, A. & Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 43, 4098–4104 (2009).
Google Scholar
Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Water use of electricity technologies: A global meta-analysis. Renew. Sustain. Energy Rev. 115, 1–11 (2019).
Google Scholar
Hilali, A., Mardoude, Y., Essahlaoui, A., Rahali, A. & Ouanjli, N. E. Migration to solar water pump system: environmental and economic benefits and their optimization using genetic algorithm based MPPT. Energy Rep. 8, 10144–10153 (2022).
Google Scholar
Cossutta, M. et al. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 242, 118468 (2020).
Google Scholar
Mendonça, M. C. P., Rodrigues, N. P., De Jesus, M. B. & Amorim, M. J. B. Graphene-based nanomaterials in soil: ecotoxicity assessment using enchytraeus crypticus reduced full life cycle. Nanomaterials 9, (2019).
Ault, T., Krahn, S. & Croff, A. Comparing the environmental impacts of uranium- and thorium-based fuel cycles with different recycle options. Prog Nucl. Energy. 100, 114–134 (2017).
Google Scholar
Chelvam, K., Hanafiah, M. M., Ali, A., Al Blooshi, A. & K. & Gate-to-gate life cycle analysis of a pilot-scale solar driven two-step thermochemical hydrogen sulfide decomposition for hydrogen production. J. Clean. Prod. 428, 139369 (2023).
Google Scholar
Zapp, P., Schreiber, A., Marx, J. & Kuckshinrichs, W. Environmental impacts of rare Earth production. MRS Bull. 47, 267–275 (2022).
Google Scholar
Schreiber, A., Marx, J. & Zapp, P. Life cycle assessment studies of rare earths production – Findings from a systematic review. Sci. Total Environ. 791, 148257 (2021).
Google Scholar
Farjana, S. H., Huda, N., Mahmud, M. A. P. & Lang, C. Comparative life-cycle assessment of uranium extraction processes. J. Clean. Prod. 202, 666–683 (2018).
Google Scholar