Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52, 650–656 (1979).
Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Google Scholar
Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).
Google Scholar
Michiels, C., Tellier, C. & Feron, O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochim. Biophys. Acta. 1866, 76–86 (2016).
Google Scholar
Span, P. N. & Bussink, J. Biology of hypoxia. Semin Nucl. Med. 45, 101–109 (2015).
Google Scholar
Tatum, J. L. et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int. J. Radiat. Biol. 82, 699–757 (2006).
Google Scholar
Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer. 9, 539–549 (1955).
Google Scholar
Vaupel, P. & Mayer, A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv. Exp. Med. Biol. 812, 19–24 (2014).
Google Scholar
Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 3, 83–92 (2015).
Google Scholar
Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175–180 (2016).
Google Scholar
Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T. & Vu, V. T. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr. Mol. Med. 9, 442–458 (2009).
Google Scholar
Shannon, A. M., Bouchier-Hayes, D. J., Condron, C. M. & Toomey, D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat. Rev. 29, 297–307 (2003).
Google Scholar
Walsh, J. C. et al. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal. 21, 1516–1554 (2014).
Google Scholar
Brizel, D. M., Sibley, G. S., Prosnitz, L. R., Scher, R. L. & Dewhirst, M. W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 38, 285–289 (1997).
Google Scholar
Brown, J. M. The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F. Cain memorial award lecture. Cancer Res. 59, 5863–5870 (1999).
Google Scholar
Denny, W. A. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol. 6, 419–428 (2010).
Google Scholar
Duan, J. X. et al. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem. 51, 2412–2420 (2008).
Google Scholar
Hunter, F. W., Wouters, B. G. & Wilson, W. R. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br. J. Cancer. 114, 1071–1077 (2016).
Google Scholar
Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 26, 341–352 (2007).
Google Scholar
Patel, A. & Sant, S. Hypoxic tumor microenvironment: opportunities to develop targeted therapies. Biotechnol. Adv. 34, 803–812 (2016).
Google Scholar
Phillips, R. M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol. 77, 441–457 (2016).
Google Scholar
Wigerup, C., Pahlman, S. & Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152–169 (2016).
Google Scholar
Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer. 11, 393–410 (2011).
Google Scholar
Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee, W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 12, 1239–1242 (1986).
Google Scholar
Oostveen, E. A. & Speckamp, W. N. Mitomycin Analogs.1. Indoloquinones as (Potential) bisalkylating agents. Tetrahedron 43, 255–262 (1987).
Google Scholar
Patterson, A. V. et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Research: Official J. Am. Association Cancer Res. 13, 3922–3932 (2007).
Google Scholar
Nishida, C. R. & de Ortiz, P. R. Reductive heme-dependent activation of the n-oxide prodrug AQ4N by nitric oxide synthase. J. Med. Chem. 51, 5118–5120 (2008).
Google Scholar
Liu, Q. et al. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother. Pharmacol. 69, 1487–1498 (2012).
Google Scholar
Patterson, A. V. et al. The hypoxia-activated EGFR-TKI TH-4000 overcomes erlotinib-resistance in preclinical NSCLC models at plasma levels achieved in a phase 1 clinical trial. Cancer Res. 75 (15_Supplement), 5358 (2015).
Google Scholar
Patterson, A. V. et al. TH-4000, a hypoxia-activated EGFR/Her2 inhibitor to treat EGFR-TKI resistant T790M-negative NSCLC. J. Clin. Oncol. 33, e13548–e13548 (2015).
Google Scholar
Abbattista, M. R. et al. Pre-clinical activity of PR-104 as monotherapy and in combination with Sorafenib in hepatocellular carcinoma. Cancer Biol. Ther. 16, 610–622 (2015).
Google Scholar
Benito, J. et al. Hypoxia-Activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin. Cancer Research: Official J. Am. Association Cancer Res. 22, 1687–1698 (2016).
Google Scholar
Del Rowe, J. et al. Single-arm, open-label phase II study of intravenously administered Tirapazamine and radiation therapy for glioblastoma multiforme. J. Clin. Oncol. 18, 1254–1259 (2000).
Google Scholar
Konopleva, M. et al. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica 100, 927–934 (2015).
Google Scholar
Masunaga, S. et al. Usefulness of combined treatment with continuous administration of Tirapazamine and mild temperature hyperthermia in gamma-ray irradiation in terms of local tumour response and lung metastatic potential. Int. J. Hyperth. 28, 636–644 (2012).
Google Scholar
Sun, J. D. et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Research: Official J. Am. Association Cancer Res. 18, 758–770 (2012).
Google Scholar
Groshar, D. et al. Imaging tumor hypoxia and tumor perfusion. J. Nucl. Med. 34, 885–888 (1993).
Google Scholar
Lee, C. T., Boss, M. K. & Dewhirst, M. W. Imaging tumor hypoxia to advance radiation oncology. Antioxid. Redox Signal. 21, 313–337 (2014).
Google Scholar
Minn, H. et al. Imaging of tumor hypoxia to predict treatment sensitivity. Curr. Pharm. Design. 14, 2932–2942 (2008).
Google Scholar
Pacheco-Torres, J., Lopez-Larrubia, P., Ballesteros, P. & Cerdan, S. Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed. 24, 1–16 (2011).
Google Scholar
Reischl, G. et al. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA–first small animal PET results. J. Pharm. Pharm. Sciences: Publication Can. Soc. Pharm. Sci. Societe Canadienne des. Sci. Pharmaceutiques. 10, 203–211 (2007).
Google Scholar
Vaupel, P. & Mayer, A. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal. 22, 878–880 (2015).
Google Scholar
Baudelet, C. & Gallez, B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn. Reson. Med. 48, 980–986 (2002).
Google Scholar
Ding, Y. et al. Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J. Magn. Reson. Imaging. 38, 1230–1236 (2013).
Google Scholar
O’Connor, J. P. et al. Oxygen-Enhanced MRI accurately Identifies, Quantifies, and maps tumor hypoxia in preclinical cancer models. Cancer Res. 76, 787–795 (2016).
Google Scholar
Gulaka, P. K. et al. GdDO3NI, a nitroimidazole-based T1 MRI contrast agent for imaging tumor hypoxia in vivo. J. Biol. Inorg. Chem. 19, 271–279 (2014).
Google Scholar
Rojas-Quijano, F. A. et al. Synthesis and characterization of a hypoxia-sensitive MRI probe. Chemistry 18, 9669–9676 (2012).
Google Scholar
Mason, R. P., Rodbumrung, W. & Antich, P. P. Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed. 9, 125–134 (1996).
Google Scholar
Kodibagkar, V. D., Cui, W., Merritt, M. E. & Mason, R. P. Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn. Reson. Med. 55, 743–748 (2006).
Google Scholar
Kodibagkar, V. D., Wang, X., Pacheco-Torres, J., Gulaka, P. & Mason, R. P. Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed. 21, 899–907 (2008).
Google Scholar
Agarwal, S., Gulaka, P. K., Rastogi, U. & Kodibagkar, V. D. More bullets for PISTOL: linear and Cyclic siloxane reporter probes for quantitative (1)H MR oximetry. Sci. Rep. 10, 1399 (2020).
Google Scholar
Hoehn-Berlage, M., Tolxdorff, T., Bockhorst, K., Okada, Y. & Ernestus, R. I. In vivo NMR T2 relaxation of experimental brain tumors in the cat: a multiparameter tissue characterization. Magn. Reson. Imaging. 10, 935–947 (1992).
Google Scholar
Zhao, D., Jiang, L. & Mason, R. P. Measuring changes in tumor oxygenation. Methods Enzymol. 386, 378–418 (2004).
Google Scholar
Dula, A. N., Gochberg, D. F., Valentine, H. L., Valentine, W. M. & Does, M. D. Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord. Magn. Reson. Med. 63, 902–909 (2010).
Google Scholar
Harkins, K. D., Valentine, W. M., Gochberg, D. F. & Does, M. D. In-vivo multi-exponential T2, magnetization transfer and quantitative histology in a rat model of intramyelinic edema. Neuroimage Clin. 2, 810–817 (2013).
Google Scholar
Stokes, A. M., Hart, C. P. & Quarles, C. C. Hypoxia imaging with PET correlates with antitumor activity of the Hypoxia-Activated prodrug Evofosfamide (TH-302) in rodent glioma models. Tomography 2, 229–237 (2016).
Google Scholar
Takakusagi, Y. et al. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302. PLoS One. 9, e107995 (2014).
Google Scholar
Cherk, M. H. et al. Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-Fluoromisonidazole and 18F-FDG PET. J. Nucl. Med. 47, 1921–1926 (2006).
Google Scholar
Piert, M. et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med. 46, 106–113 (2005).
Google Scholar
Solomon, B. et al. Modulation of intratumoral hypoxia by the epidermal growth factor receptor inhibitor gefitinib detected using small animal PET imaging. Mol. Cancer Ther. 4, 1417–1422 (2005).
Google Scholar
Lin, Y., Wang, X. & Jin, H. EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am. J. Cancer Res. 4, 411–435 (2014).
Google Scholar
Choi, K., Creighton, C. J., Stivers, D., Fujimoto, N. & Kurie, J. M. Transcriptional profiling of non-small cell lung cancer cells with activating EGFR somatic mutations. PLoS One. 2, e1226 (2007).
Google Scholar
Anderson, N. G., Ahmad, T., Chan, K., Dobson, R. & Bundred, N. J. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int. J. Cancer. 94, 774–782 (2001).
Google Scholar
Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 4, 437–447 (2004).
Google Scholar
Wilson, W. R. et al. Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with Dinitrobenzamide mustards. Radiat. Res. 167, 625–636 (2007).
Google Scholar
Arvold, N. D., Heidari, P., Kunawudhi, A., Sequist, L. V. & Mahmood, U. Tumor hypoxia response after targeted therapy in EGFR-Mutant Non-Small cell lung cancer: proof of concept for FMISO-PET. Technol. Cancer Res. Treat. 15, 234–242 (2016).
Google Scholar
Bains, L. J., Baker, J. H., Kyle, A. H., Minchinton, A. I. & Reinsberg, S. A. Detecting vascular-targeting effects of the hypoxic cytotoxin Tirapazamine in tumor xenografts using magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 74, 957–965 (2009).
Google Scholar
Baker, J. H. et al. Targeting the tumour vasculature: exploitation of low oxygenation and sensitivity to NOS Inhibition by treatment with a hypoxic cytotoxin. PLoS One. 8, e76832 (2013).
Google Scholar
Huxham, L. A., Kyle, A. H., Baker, J. H., McNicol, K. L. & Minchinton, A. I. Tirapazamine causes vascular dysfunction in HCT-116 tumour xenografts. Radiother Oncol. 78, 138–145 (2006).
Google Scholar
Huxham, L. A., Kyle, A. H., Baker, J. H., McNicol, K. L. & Minchinton, A. I. Exploring vascular dysfunction caused by Tirapazamine. Microvasc Res. 75, 247–255 (2008).
Google Scholar