Shi, J. et al. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030 (2024).
Article
ADS
CAS
PubMed
Google Scholar
Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).
Article
CAS
PubMed
Google Scholar
Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).
Article
ADS
CAS
PubMed
Google Scholar
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).
Article
PubMed
PubMed Central
Google Scholar
Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).
Article
ADS
CAS
PubMed
Google Scholar
Williams, E. Environmental effects of information and communications technologies. Nature 479, 354–358 (2011).
Article
ADS
CAS
PubMed
Google Scholar
Shi, H. H. et al. Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023).
Article
ADS
CAS
PubMed
Google Scholar
Chen, S. How much energy will AI really consume? The good, the bad and the unknown. Nature 639, 22–24 (2025).
Article
ADS
CAS
PubMed
Google Scholar
Kim, H. J., Koo, J. H., Lee, S., Hyeon, T. & Kim, D.-H. Materials design and integration strategies for soft bioelectronics in digital healthcare. Nat. Rev. Mater. 10, 654–673 (2025).
Article
ADS
Google Scholar
Nikolka, M., Göke, S., Burkacky, O., Spiller, P. & Patel, M. Unlocking net-zero in semiconductor manufacturing. Nat. Rev. Electr. Eng. 1, 487–488 (2024).
Article
Google Scholar
McCulloch, I., Chabinyc, M., Brabec, C., Nielsen, C. B. & Watkins, S. E. Sustainability considerations for organic electronic products. Nat. Mater. 22, 1304–1310 (2023).
Article
ADS
CAS
PubMed
Google Scholar
The Global E-Waste Monitor 2024–Electronic Waste Rising Five Times Faster than Documented e-Waste Recycling (United Nations, 2024); https://ewastemonitor.info/wp-content/uploads/2024/12/GEM_2024_EN_11_NOV-web.pdf.
Yang, Q. et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat. Electron. 5, 526–538 (2022).
Article
CAS
Google Scholar
Jeong, H. et al. Novel eco-friendly starch paper for use in flexible, transparent and disposable organic electronics. Adv. Funct. Mater. 28, 1704433–1704442 (2018).
Article
Google Scholar
Zhang, Z. et al. Recyclable vitrimer-based printed circuit boards for sustainable electronics. Nat. Sustain. 7, 616–627 (2024).
Article
Google Scholar
Vũ, N. Đ et al. Gallium-catalyzed recycling of silicone waste with boron trichloride to yield key chlorosilanes. Science 388, 392–400 (2025).
Article
ADS
PubMed
Google Scholar
Park, H. et al. Organic flexible electronics with closed-loop recycling for sustainable wearable technology. Nat. Electron. 7, 39–50 (2024).
Article
CAS
Google Scholar
Corzo, D. et al. High-performing organic electronics using terpene green solvents from renewable feedstocks. Nat. Energy 8, 62–73 (2023).
Article
ADS
Google Scholar
Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordella, M., Alfieri, F. & Sanfelix, J. Reducing the carbon footprint of ICT products through material efficiency strategies: a life cycle analysis of smartphones. J. Ind. Ecol. 25, 448–464 (2021).
Article
Google Scholar
Peng, P. & Shehabi, A. Regional economic potential for recycling consumer waste electronics in the United States. Nat. Sustain. 6, 93–102 (2023).
Article
Google Scholar
Moni, S. M., Mahmud, R., High, K. & Carbajales-Dale, M. Life cycle assessment of emerging technologies: a review. J. Ind. Ecol. 24, 52–63 (2020).
Article
CAS
Google Scholar
Strazza, C. et al. Technology Readiness Level—Guidance Principles for Renewable Energy Technologies Final Report (European Commission, Directorate-General for Research and Innovation, 2017).
Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).
Article
Google Scholar
Dexcom G6 CGM system for personal use. Dexcom https://provider.dexcom.com/products/g6-personal-cgm (2025).
Williams, E. D., Ayres, R. U. & Heller, M. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 36, 5504–5510 (2002).
Article
ADS
CAS
PubMed
Google Scholar
Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).
Article
CAS
PubMed
Google Scholar
Xu, Y. et al. Pencil–paper on-skin electronics. Proc. Natl Acad. Sci. USA 117, 18292–18301 (2020).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Bonnassieux, Y. et al. The 2021 flexible and printed electronics roadmap. Flex. Print. Electron. 6, 023001 (2021).
Article
CAS
Google Scholar
Schaubroeck, T. et al. Attributional & consequential life cycle assessment: definitions, conceptual characteristics and modelling restriction. Sustainability 13, 7386–7433 (2021).
Article
ADS
CAS
Google Scholar
Norgate, T. & Haque, N. Using life cycle assessment to evaluate some environmental impacts of gold production. J. Clean. Prod. 29–30, 53–63 (2012).
Article
Google Scholar
Bigum, M., Damgaard, A., Scheutz, C. & Christensen, T. H. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables). Resour. Conserv. Recycl. 122, 251–260 (2017).
Article
Google Scholar
Global smartphone market soared 7% in 2024 as vendors prepare for tricky 2025. canalys.com https://canalys.com/newsroom/worldwide-smartphone-market-2024 (2025).
Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).
Article
CAS
PubMed
Google Scholar
Feig, V. R., Tran, H. & Bao, Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 4, 337–348 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujisaki, Y. et al. Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24, 1657–1663 (2014).
Article
CAS
Google Scholar
Material property data. MatWeb https://www.matweb.com/index.aspx (2025).
Fan, Z.-J. et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5, 191–198 (2011).
Article
CAS
PubMed
Google Scholar
Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
Article
ADS
CAS
PubMed
Google Scholar
Liu, H., Liu, D., Yang, J., Gao, H. & Wu, Y. Flexible electronics based on organic semiconductors: from patterned assembly to integrated applications. Small 19, 2206938 (2023).
Article
CAS
Google Scholar
Chu, M. et al. Co-recycling of plastics and other waste materials. Nat. Rev. Clean Technol. 1, 320–332 (2025).
Article
Google Scholar
Dai, Y. et al. Soft hydrogel semiconductors with augmented biointeractive functions. Science 386, 431–439 (2024).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Piao, Z., Agyei Boakye, A. A. & Yao, Y. Environmental impacts of biodegradable microplastics. Nat. Chem. Eng. 1, 661–669 (2024).
Article
Google Scholar
Peng, J. et al. Surface coordination layer passivates oxidation of copper. Nature 586, 390–394 (2020).
Article
ADS
CAS
PubMed
Google Scholar
Bell, E. L. et al. Directed evolution of an efficient and thermostable PET depolymerase. Nat. Catal. 5, 673–681 (2022).
Article
CAS
Google Scholar
Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).
Article
ADS
CAS
PubMed
Google Scholar
Sacchi, R. et al. Prospective environmental impact assement (premise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sustain. Energy Rev. 160, 112311 (2022).
Article
Google Scholar
Yoshimoto, M. & Izumi, S. Recent progress of biomedical processor SoC for wearable healthcare application: a review. IEICE Trans. Electron. 102, 245–259 (2019).
Article
ADS
Google Scholar
Malmodin, J. & Lundén, D. The energy and carbon footprint of the global ICT and E&M sectors. Sustainability 10, 3027–3057 (2018).
Ercan M., Malmodin J., Bergmark P., Kimfalk E., & Nilsson E. Life cycle assessment of a smartphone. In Proc. ICT for Sustainability 2016 124–133 (Atlantis Press, 2016).
Suckling, J. & Lee, J. Redefining scope: the true environmental impact of smartphones? Int. J. Life Cycle Assess. 20, 1181–1196 (2015).
Article
CAS
Google Scholar
Zhang, T. et al. Life cycle assessment (LCA) of circular consumer electronics based on IC recycling and emerging PCB assembly materials. Sci. Rep. 14, 29183 (2024).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Zhang, M. et al. Towards sustainable perovskite light-emitting diodes. Nat. Sustain. 8, 315–324 (2025).
Article
Google Scholar
Yang, C. et al. A bioinspired permeable junction approach for sustainable device microfabrication. Nat. Sustain. 7, 1190–1203 (2024).
Article
Google Scholar
Li, P. et al. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 626, 990–998 (2024).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Malmodin J. & Lövehagen N. A methodology for simplified LCAs of electronic products. In 2024 Electronics Goes Green 2024+ (EGG) 1–12 (IEEE, 2024).
Zhang, Z. et al. DeltaLCA: comparative life-cycle assessment for electronics design. In Proc. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 8, 1–29 (ACM, 2024).
Teer J. & Bertolini M. Reaching Breaking Point: The Semiconductor and Critical Raw Material Ecosystem at a Time of Great Power Rivalry (The Hague Centre for Strategic Studies, 2022); https://hcss.nl/wp-content/uploads/2022/10/Reaching-breaking-point-full-HCSS-2022-revised.pdf.
Pizzol, M. et al. Normalisation and weighting in life cycle assessment: quo vadis?. Int. J. Life Cycle Assess. 22, 853–866 (2017).
Article
Google Scholar
Wang, B., Tian, X., Stranks, S. D. & You, F. Transitioning photovoltaics to all-perovskite tandems reduces 2050 climate change impacts of PV sector by 16%. Environ. Sci. Technol. 59, 9540–9551 (2025).
Article
ADS
CAS
PubMed
Google Scholar
Bass, F. M. A new product growth for model consumer durables. Manag. Sci. 50, 1825–1832 (2004).
Article
Google Scholar
Kaminski, J. Diffusion of innovation theory: theory in nursing informatics column. Can. J. Nurs. Inform. 6, 1–6 (2011).
Norton, J. A. & Bass, F. M. A diffusion theory model of adoption and substitution for successive generations of high-technology products. Manag. Sci. 33, 1069–1086 (1987).
Article
Google Scholar
Sultan, F., Farley, J. U. & Lehmann, D. R. A meta-analysis of applications of diffusion models. J. Mark. Res. 27, 70–77 (1990).
Article
Google Scholar
Managing Complications in Pregnancy and Childbirth: A Guide for Midwives and Doctors (World Health Organization, 2003).
Zhou, B. et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).
Article
Google Scholar
Cardiovascular diseases (CVDs). WHO https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2021).
Papolos, A., Narula, J., Bavishi, C., Chaudhry, F. A. & Sengupta, P. P. U.S. hospital use of echocardiography: insights from the nationwide inpatient sample. J. Am. Coll. Cardiol. 67, 502–511 (2016).
Article
PubMed
Google Scholar
Pawar P. Apple Watch statistics by revenue, sales, series, market share, country, users and usage. Coolest Gadgets https://www.coolest-gadgets.com/apple-watches-statistics/ (2023).
Forti, V., Baldé, K. & Kuehr, R. E-waste Statistics: Guidelines on Classifications, Reporting and Indicators (United Nations Univ., 2018).
Electrical and Electronic Equipment Placed on Market Calculation Tool Manual (UNITAR, 2023); https://academy-ce.info/wp-content/uploads/2024/02/ENG-EEE-POM-calculation-tool-manual.pdf.
Miller, T. R., Duan, H., Gregory, J., Kahhat, R. & Kirchain, R. Quantifying domestic used electronics flows using a combination of material flow methodologies: a US case study. Environ. Sci. Technol. 50, 5711–5719 (2016).
Article
ADS
CAS
PubMed
Google Scholar
Weibull formulas. What are the basic lifetime distribution models used for non-repairable populations? NIST https://www.itl.nist.gov/div898/handbook/apr/section1/apr162.htm?utm (2025).
Ciroth, A., Muller, S., Weidema, B. & Lesage, P. Empirically based uncertainty factors for the pedigree matrix in ecoinvent. Int. J. Life Cycle Assess. 21, 1338–1348 (2016).
Article
Google Scholar
Uncertainties. Ecoinvent Support https://support.ecoinvent.org/uncertainties (2025).
Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).
Article
CAS
Google Scholar
Worrell, E. et al. Potentials and Policy Implications of Energy and Material Efficiency Improvement (United Nations, 1997).
Zio XT® long-term continuous monitoring service. iRhythm Technologies https://www.irhythmtech.com/us/en/solutions-services/irhythm-service/zio-xt (2025).
Aktiia 24/7. Blood pressure monitor. Aktiia https://aktiia.com/uk/blood-pressure-monitor (2024).