Dingle, H. Migration: the biology of life on the move. Oxford University Press, USA. (2014).
Irwin, D. E. Speciation: new migratory direction provides route toward divergence. Curr. Biol. 19, R1111–R1113 (2009).
Article
PubMed
CAS
Google Scholar
Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).
Article
PubMed
Google Scholar
Baerwald, M. R. et al. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol. Ecol. 25, 1785–1800 (2016).
Article
PubMed
CAS
Google Scholar
Merlin, C. & Liedvogel, M. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J. Exp. Biol. 222, jeb191890 (2019).
Article
PubMed
Google Scholar
Heinze, S. & Reppert, S. M. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69, 345–358 (2011).
Article
PubMed
CAS
Google Scholar
Reppert, S. M., Guerra, P. A. & Merlin, C. Neurobiology of monarch butterfly migration. Annu. Rev. Entomol. 61, 25–42 (2016).
Article
PubMed
CAS
Google Scholar
Williams, C. B. The Migration of Butterflies (Oliver & Boyd, 1930).
Møller, A. P., Garamszegi, L. Z., Peralta-Sánchez, J. M. & Soler, J. J. Migratory divides and their consequences for dispersal, population size and parasite–host interactions. J. Evol. Biol. 24, 1744–1755 (2011).
Article
PubMed
Google Scholar
Delmore, K. E., Kenyon, H. L., Germain, R. R. & Irwin, D. E. Phenotypic divergence during speciation is inversely associated with differences in seasonal migration. Proc. R. Soc. B Biol. Sci. 282, 20151921 (2015).
Article
Google Scholar
Aikens, E. O., Bontekoe, I. D., Blumenstiel, L., Schlicksupp, A. & Flack, A. Viewing animal migration through a social lens. Trends Ecol. Evol. 37, 985–996 (2022).
Article
PubMed
Google Scholar
Rolshausen, G., Segelbacher, G., Hobson, K. A. & Schaefer, H. M. Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide. Curr. Biol. 19, 2097–2101 (2009).
Article
PubMed
CAS
Google Scholar
Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17, 1211–1218 (2014).
Article
PubMed
Google Scholar
Delmore, K. E. & Liedvogel, M. Investigating factors that generate and maintain variation in migratory orientation: a primer for recent and future work. Front. Behav. Neurosci. 10, 3 (2016).
Article
PubMed
PubMed Central
Google Scholar
Turbek, S. P., Scordato, E. S. & Safran, R. J. The role of seasonal migration in population divergence and reproductive isolation. Trends Ecol. Evol. 33, 164–175 (2018).
Article
PubMed
Google Scholar
Uy, J. A. C., Irwin, D. E. & Webster, M. S. Behavioral isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49, 1–24 (2018).
Article
Google Scholar
von Rönn, J. A. C., Harrod, C., Bensch, S. & Wolf, J. B. W. Transcontinental migratory connectivity predicts parasite prevalence in breeding populations of the European barn swallow. J. Evol. Biol. 28, 535–546 (2015).
Article
Google Scholar
Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).
Article
ADS
PubMed
CAS
Google Scholar
Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature 514, 317–321 (2014).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Lemopoulos, A., Uusi-Heikkilä, S., Huusko, A., Vasemägi, A. & Vainikka, A. Comparison of migratory and resident populations of brown trout reveals candidate genes for migration tendency. Genome Biol. Evol. 10, 1493–1503 (2018).
Article
PubMed
PubMed Central
CAS
Google Scholar
Scordato, E. S. et al. Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau. Ecol. Lett. 23, 231–241 (2020).
Article
PubMed
Google Scholar
Cavedon, M. et al. Genomic legacy of migration in endangered caribou. PLoS Genet. 18, e1009974 (2022).
Article
PubMed
PubMed Central
CAS
Google Scholar
Sinclair-Waters, M. et al. Ancient chromosomal rearrangement associated with local adaptation of a postglacially colonized population of Atlantic Cod in the northwest Atlantic. Mol. Ecol. 27, 339–351 (2018).
Article
PubMed
CAS
Google Scholar
Pearse, D. E. et al. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat. Ecol. Evol. 3, 1731–1742 (2019).
Article
PubMed
Google Scholar
Matschiner, M. et al. Supergene origin and maintenance in Atlantic cod. Nat. Ecol. Evol. 6, 469–481 (2022).
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Doñoso, I. et al. Massive genome inversion drives coexistence of divergent morphs in common quails. Curr. Biol. 32, 462–469 (2022).
Article
PubMed
Google Scholar
Sokolovskis, K. et al. Migration direction in a songbird explained by two loci. Nat. Comm. 14, 165 (2023).
Article
ADS
CAS
Google Scholar
Delmore, K. E. et al. Structural genomic variation and migratory behavior in a wild songbird. Evol. lett. 7, 401–412 (2023).
Article
PubMed
PubMed Central
Google Scholar
Caballero-López, V., Lundberg, M., Sokolovskis, K. & Bensch, S. Transposable elements mark a repeat-rich region associated with migratory phenotypes of willow warblers (Phylloscopus trochilus). Mol. Ecol. 31, 1128–1141 (2022).
Article
PubMed
Google Scholar
Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).
Article
PubMed
PubMed Central
Google Scholar
Mérot, C. et al Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Mol. Biol. Evol. 38, 3953–3971.
Ravinet, M. et al. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30, 1450–1477 (2017).
Article
PubMed
CAS
Google Scholar
Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).
Article
PubMed
Google Scholar
García-Berro, A. et al. Migratory behaviour is positively associated with genetic diversity in butterflies. Mol. Ecol. 32, 560–574 (2023).
Article
PubMed
Google Scholar
Reich, M. S. et al. Isotope geolocation and population genomics in Vanessa cardui: Short-and long-distance migrants are genetically undifferentiated. PNAS Nexus 4, pgae586 (2025).
Article
PubMed
PubMed Central
CAS
Google Scholar
Reich, M. S. et al. Trans-Saharan migratory patterns in Vanessa cardui and evidence for a southward leapfrog migration. iScience 27, 111342 (2024).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Suchan, T. et al. A trans-oceanic flight of over 4200 km by painted lady butterflies. Nat. Commun. 15, 5205 (2024).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Dingle, H. Bird migration in the southern hemisphere: a review comparing continents. Emu 108, 341–359 (2008).
Article
Google Scholar
Winkler, D. W. et al. Long-distance range expansion and rapid adjustment of migration in a newly established population of barn swallows breeding in Argentina. Curr. Biol. 27, 1080–1084 (2017).
Article
PubMed
CAS
Google Scholar
Areta, J. I. et al. Rapid adjustments of migration and life history in hemisphere-switching cliff swallows. Curr. Biol. 31, 2914–2919 (2021).
Article
PubMed
CAS
Google Scholar
Helm, B. & Muheim, R. Bird migration: clock and compass facilitate hemisphere switching. Curr. Biol. 31, R1058–R1061 (2021).
Article
PubMed
CAS
Google Scholar
Jackson, J. A. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. R. Soc. B 281, 20133222 (2014).
Article
PubMed
PubMed Central
Google Scholar
Pérez-Alvarez, M. et al. Contrasting phylogeographic patterns among Northern and Southern Hemisphere fin whale populations with new data from the Southern Pacific. Front. Mar. Sci. 8, 630233 (2021).
Article
Google Scholar
Relano, V. & Pauly, D. Philopatry as a tool to define tentative closed migration cycles and conservation areas for large pelagic fishes in the pacific. Sustainability 14, 5577 (2022).
Article
ADS
Google Scholar
Guerra, P. A., Gegear, R. J. & Reppert, S. M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5, 1–8 (2014).
Article
Google Scholar
Dreyer, D. et al. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong moth. Curr. Biol. 28, 2160–2166 (2018).
Article
PubMed
CAS
Google Scholar
Wan, G., Hayden, A. N., Iiams, S. E. & Merlin, C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat. Commun. 12, 771 (2021).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Talavera, G. & Vila, R. Discovery of mass migration and breeding of the painted lady butterfly Vanessa cardui in the Sub-Sahara: the Europe–Africa migration revisited. Biol. J. Linn. Soc. 120, 274–285 (2017).
Google Scholar
Talavera, G., Bataille, C., Benyamini, D., Gascoigne-Pees, M. & Vila, R. Round-trip across the Sahara: Afrotropical Painted Lady butterflies recolonize the Mediterranean in early spring. Biol. Lett. 14, 20180274 (2018).
Article
PubMed
PubMed Central
Google Scholar
Talavera, G. et al. The Afrotropical breeding grounds of the Palearctic-African migratory painted lady butterflies (Vanessa cardui). Proc. Natl. Acad. Sci. 120, e2218280120 (2023).
Article
PubMed
PubMed Central
CAS
Google Scholar
Gorki, J. L. et al. Pollen metabarcoding reveals the origin and multigenerational migratory pathway of an intercontinental-scale butterfly outbreak. Curr. Biol. 34, P2684–2692.E6 (2024).
Article
Google Scholar
Menchetti, M., Guéguen, M. & Talavera, G. Spatio-temporal ecological niche modelling of multigenerational insect migrations. Proc. Biol. Sci. 286, 20191583 (2019).
PubMed
PubMed Central
Google Scholar
Chen, M. Z. et al. Migration trajectories of the diamondback moth Plutella xylostella in China inferred from population genomic variation. Pest Manag. Sci. 77, 1683–1693 (2021).
Article
PubMed
CAS
Google Scholar
Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22, 1–12 (2021).
Article
Google Scholar
Jin, M. et al. Adaptive evolution to the natural and anthropogenic environment in a global invasive crop pest, the cotton bollworm. Innov. 4 (2023).
Ahrens, C. W. et al. Stochastic wind-driven migration likely maintains panmixia in the endangered bogong moth, Agrotis infusa. Biol. Conserv. 302, 110993 (2025).
Article
Google Scholar
Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Evol. Biol. 35, 1284–1290 (2018).
Article
CAS
Google Scholar
Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).
Article
PubMed
PubMed Central
CAS
Google Scholar
Lohse, K. et al. The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758. Wellcome Open Res. 6. (2021).
Alkan, C., Coe, B. & Eichler, E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).
Article
PubMed
PubMed Central
CAS
Google Scholar
Kosugi, S. et al. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 20, 117 (2019).
Article
PubMed
PubMed Central
Google Scholar
Sturtevant, A. H. & Beadle, G. W. The relations of inversions in the X chromosome of Drosophila melanogaster to crossing over and disjunction. Genetics 21, 554 (1936).
Article
PubMed
PubMed Central
CAS
Google Scholar
Navarro, A., Betrán, E., Barbadilla, A. & Ruiz, A. Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics 146, 695–709 (1997).
Article
PubMed
PubMed Central
CAS
Google Scholar
Reis, M., Vieira, C. P., Lata, R., Posnien, N. & Vieira, J. Origin and consequences of chromosomal inversions in the virilis group of Drosophila. Genome Biol. Evol. 10, 3152–3166 (2018).
Article
PubMed
PubMed Central
CAS
Google Scholar
Samuk, K. et al. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390 (2017).
Article
PubMed
Google Scholar
Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).
Article
PubMed
Google Scholar
Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).
Article
PubMed
Google Scholar
Wahlberg, N. & Rubinoff, D. Vagility across Vanessa (Lepidoptera: Nymphalidae): mobility in butterfly species does not inhibit the formation and persistence of isolated sister taxa. Syst. Entomol. 36, 362–370 (2011).
Article
Google Scholar
Berdan, E. L. et al. How chromosomal inversions reorient the evolutionary process. J. Evol. Biol. 36, 1761–1782 (2023).
Article
PubMed
CAS
Google Scholar
Gilburn, A. S. & Day, T. H. Female mating behaviour, sexual selection and chromosome I inversion karyotype in the seaweed fly, Coelopa frigida. Heredity 82, 276–281 (1999).
Article
PubMed
Google Scholar
Thomas, J. W. et al. The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination. Genetics 179, 1455–1468 (2008).
Article
PubMed
PubMed Central
CAS
Google Scholar
Ayala, D., Ullastres, A. & González, J. Adaptation through chromosomal inversions in Anopheles. Front. Genet. 5, 129 (2014).
Article
PubMed
PubMed Central
Google Scholar
Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).
Article
PubMed
Google Scholar
Huang, Y. C., Dang, V. D., Chang, N. C. & Wang, J. Multiple large inversions and breakpoint rewiring of gene expression in the evolution of the fire ant social supergene. Proc. R. Soc. B 285, 20180221 (2018).
Article
PubMed
PubMed Central
Google Scholar
Koch, E. L. et al. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol. Lett. 5, 196–213 (2021).
Article
PubMed
PubMed Central
Google Scholar
Arostegui, M. C., Quinn, T. P., Seeb, L. W., Seeb, J. E. & McKinney, G. J. Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout. Mol. Ecol. 28, 1412–1427 (2019).
Article
PubMed
CAS
Google Scholar
Lundberg, M., Mackintosh, A., Petri, A. & Bensch, S. Inversions maintain differences between migratory phenotypes of a songbird. Nat. Commun. 14, 452 (2023).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Nguyen, T. A. T., Beetz, M. J., Merlin, C. & El Jundi, B. Sun compass neurons are tuned to migratory orientation in monarch butterflies. Proc. R. Soc. B 288, 20202988 (2021).
Article
PubMed
PubMed Central
Google Scholar
Homberg, U. et al. The sky compass network in the brain of the desert locust. J. Comp. Physiol. 209, 641–662 (2023).
Article
Google Scholar
Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M. & El Jundi, B. Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. B 366, 680–687 (2011).
Article
Google Scholar
Honkanen, A., Adden, A., da Silva Freitas, J. & Heinze, S. The insect central complex and the neural basis of navigational strategies. J. Exp. Biol. 222, jeb188854 (2019).
Article
PubMed
Google Scholar
Merlin, C., Heinze, S. & Reppert, S. M. Unraveling navigational strategies in migratory insects. Curr. Opin. Neurobiol. 22, 353–361 (2012).
Article
PubMed
CAS
Google Scholar
Homberg, U., Humberg, T. H., Seyfarth, J., Bode, K. & Perez, M. Q. GABA immunostaining in the central complex of dicondylian insects. J. Comp. Neurol. 526, 2301–2318 (2018).
Article
PubMed
CAS
Google Scholar
von Hadeln, J. et al. Neuroarchitecture of the central complex of the desert locust: tangential neurons. J. Comp. Neurol. 528, 906–934 (2020).
Article
Google Scholar
Takahashi, N., Zittrell, F., Hensgen, R. & Homberg, U. Receptive field structures for two celestial compass cues at the input stage of the central complex in the locust brain. J. Exp. Biol. 225, jeb243858 (2022).
Article
PubMed
PubMed Central
Google Scholar
Lamaze, A., Krätschmer, P., Chen, K. F., Lowe, S. & Jepson, J. E. A wake-promoting circadian output circuit in Drosophila. Curr. Biol. 28, 3098–3105 (2018).
Article
PubMed
CAS
Google Scholar
Boman, J. et al. Environmental stress during larval development induces DNA methylation shifts in the migratory painted lady butterfly (Vanessa cardui). Mol. Ecol. 32, 3513–3523 (2023).
Article
PubMed
CAS
Google Scholar
Friberg, M., Lehmann, P. & Wiklund, C. Autumn mass change and winter mass loss differ between migratory and nonmigratory butterflies. Anim. Behav. 204, 67–75 (2023).
Article
Google Scholar
Näsvall K., Shipilina D., Vila R., Talavera G. & Backström N. Resource availability affects activity profiles of regulatory elements in a long-distance butterfly migrant. Authorea. https://doi.org/10.22541/au.167827909.99815237/v1 (2023).
Shipilina, D. et al. Gene expression responses to environmental cues shed light on components of the migratory syndrome in butterflies. bioRxiv, https://www.biorxiv.org/content/10.1101/2024.07.17.602486v1 (2024).
Tremblay, J. J., Lanctôt, C. & Drouin, J. The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol. Endocrinol. 12, 428–441 (1998).
Article
PubMed
CAS
Google Scholar
Rankin, M. A. & Riddiford, L. M. Significance of haemolymph juvenile hormone titer changes in timing of migration and reproduction in adult Oncopeltus fasciatus. J. Insect Physiol. 24, 31–38 (1978).
Article
CAS
Google Scholar
Jones, C. M. et al. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Mol. Ecol. 24, 4901–4911 (2015).
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang, L. et al. Juvenile hormone regulates the shift from migrants to residents in adult oriental armyworm, Mythimna separata. Sci. Rep. 10, 11626 (2020).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Dou, X. & Jurenka, R. Pheromone biosynthesis activating neuropeptide family in insects: a review. Front. Endocrinol. 14, 1274750 (2023).
Article
Google Scholar
Rodríguez, S., Camps, F. & Fabriàs, G. Inhibition of the acyl-CoA desaturases involved in the biosynthesis of Spodoptera littoralis sex pheromone by analogs of 10, 11-methylene-10-tetradecenoic acid. Insect Biochem. Mol. Biol. 34, 283–289 (2004).
Article
PubMed
Google Scholar
Finley, K. D., Taylor, B. J., Milstein, M. & McKeown, M. dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila melanogaster. Proc. Natl. Acad. Sci. 94, 913–918 (1997).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Kawaoka, S. et al. The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 15, 1258–1264 (2009).
Article
PubMed
PubMed Central
CAS
Google Scholar
Dagilis, A. J. & Kirkpatrick, M. Prezygotic isolation, mating preferences, and the evolution of chromosomal inversions. Evolution 70, 1465–1472 (2016).
Article
PubMed
Google Scholar
Huang, K. & Rieseberg, L. H. Frequency, origins, and evolutionary role of chromosomal inversions in plants. Front. Plant Sci. 11, 296 (2020).
Article
PubMed
PubMed Central
Google Scholar
Arrese, E. L., Patel, R. T. & Soulages, J. L. The main triglyceride-lipase from the insect fat body is an active phospholipase A1: identification and characterization. J. Lipid Res. 47, 2656–2667 (2006).
Article
PubMed
CAS
Google Scholar
Doyle, T. et al. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Mol. Ecol. 31, 5434332–5434350 (2022).
Article
Google Scholar
Jin, M. et al. Adaptive evolution to the natural and anthropogenic environment in a global invasive crop pest, the cotton bollworm. Innovation 4 (2023).
Van Mierlo, J. T. et al. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLOS Pathog. 8, e1002872 (2012).
Article
PubMed
PubMed Central
Google Scholar
Santos, D. et al. Insights into RNAi-based antiviral immunity in Lepidoptera: acute and persistent infections in Bombyx mori and Trichoplusia ni cell lines. Sci. Rep. 8, 2423 (2018).
Article
ADS
PubMed
PubMed Central
Google Scholar
Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).
Article
PubMed
PubMed Central
CAS
Google Scholar
Winker, K. On the origin of species through heteropatric differentiation: a review and a model of speciation in migratory animals. Ornithol. Monogr. 69, 1–30 (2010).
Article
Google Scholar
Lyons, J. I. et al. Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol. Ecol. 21, 3433–3444 (2012).
Article
PubMed
Google Scholar
Talla, V. et al. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Mol. Ecol. 29, 2567–2582 (2020).
Article
PubMed
PubMed Central
Google Scholar
Freedman, M. G. et al. Are eastern and western monarch butterflies distinct populations? A review of evidence for ecological, phenotypic, and genetic differentiation and implications for conservation. Conserv. Sci. Pract. 3, e432 (2021).
Article
Google Scholar
Wallace, J. R. Maleszka, R., & Warrant, E. J. Large-scale whole-genome sequencing of migratory Bogong moths Agrotis infusa reveals genetic variants associated with migratory direction in a panmictic population. bioRxiv, https://doi.org/10.1101/2022.05.27.493801 (2022).
GBIF.org (2024) GBIF Occurrence Download https://doi.org/10.15468/dl.z66kv5.
LepiMAP: Atlas of African Lepidoptera. Published by the FitzPatrick Institute of African Ornithology, University of Cape Town, http://vmus.adu.org.za/?vm=LepiMAP (2023)
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag). https://ggplot2.tidyverse.org (2009).
Hijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. Package ‘geosphere’. Spherical trigonometry 1, 1-45. https://github.com/rspatial/geosphere (2017).
Hijmans, R. J. et al. Package ‘terra’. Maintainer: Vienna, Austria. https://rspatial.github.io/terra/ (2022).
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Article
PubMed
PubMed Central
Google Scholar
García-Berro, A. et al. A north-south hemispheric migratory divide in the butterfly Vanessa cardui. https://github.com/GTlabIBB/MigratoryDivide, https://doi.org/10.5281/zenodo.17113173 (2025).
QGIS.org, QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.org (2024).
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135 (2012).
Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Eaton, D. A. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinform 36, 2592–2594 (2020).
Article
CAS
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinform 27, 2156–2158 (2011).
Article
CAS
Google Scholar
Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinform 24, 1403–1405 (2008).
Article
CAS
Google Scholar
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).
Article
PubMed
PubMed Central
Google Scholar
Shipilina, D. et al. Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (Vanessa cardui) butterfly. Genomics 114, 110481 (2022).
Article
PubMed
CAS
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinform 26, 841–842 (2010).
Article
CAS
Google Scholar
Korunes, K. L. & Samuk, K. pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Res. 21, 1359–1368 (2021).
Article
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinform 25, 1754–1760 (2009).
Article
CAS
Google Scholar
Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).
Article
PubMed
PubMed Central
CAS
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinform 31, 3210–3212 (2015).
Article
Google Scholar
Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinform 33, 3635–3637 (2017).
Article
CAS
Google Scholar
Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinform 32, 292–294 (2016).
Article
CAS
Google Scholar
Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).
Article
ADS
PubMed
CAS
Google Scholar
Keightley, P. D. et al. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol. Ecol. Evol. 32, 239–243 (2015).
CAS
Google Scholar
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Article
PubMed
PubMed Central
CAS
Google Scholar
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinform 28, 1647–1649 (2012).
Article
Google Scholar
Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).
Article
PubMed
CAS
Google Scholar
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinform 35, 4453–4455 (2019).
Article
CAS
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
Article
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu S. et al. “Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data.” iMeta, 1, e56 (2022).
Alexa, A., & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R package version, 2 (2010).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Article
MathSciNet
Google Scholar
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
Article
PubMed
PubMed Central
CAS
Google Scholar