Valérie Masson-Delmotte, P. Z. et al. Nada Caud Climate Change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change 2 (IPCC, 2021).
Domeisen, D. I. V. et al. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 4, 36–50 (2022).
Article
Google Scholar
Perkins, S. E., Alexander, L. V. & Nairn, J. R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39 https://doi.org/10.1029/2012gl053361 (2012).
Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).
Article
Google Scholar
Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61 https://doi.org/10.1029/2022rg000780 (2023).
Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).
Article
Google Scholar
Stone, B. Jr. et al. Compound climate and infrastructure events: how electrical grid failure alters heat wave risk. Environ. Sci. Technol. 55, 6957–6964 (2021).
Article
Google Scholar
Libonati, R. et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 17 https://doi.org/10.1088/1748-9326/ac462e (2022).
Ridder, N. N. et al. Global hotspots for the occurrence of compound events. Nat. Commun. 11, 5956 (2020).
Article
Google Scholar
Cunningham, C. X., Williamson, G. J. & Bowman, D. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420–1425 (2024).
Article
Google Scholar
Hegedűs, D., Ballinger, A. P. & Hegerl, G. C. Observed links between heatwaves and wildfires across Northern high latitudes. Environ. Res. Lett. 19 https://doi.org/10.1088/1748-9326/ad2b29 (2024).
Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022).
Article
Google Scholar
Brown, P. T. et al. Climate warming increases extreme daily wildfire growth risk in California. Nature 621, 760–766 (2023).
Article
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 113, 11770–11775 (2016).
Article
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Article
Google Scholar
Ellis, T. M., Bowman, D., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).
Article
Google Scholar
Tang, W. et al. Widespread phytoplankton blooms triggered by 2019-2020 Australian wildfires. Nature 597, 370–375 (2021).
Article
Google Scholar
Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2020).
Article
Google Scholar
Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).
Article
Google Scholar
Burke, M. et al. The contribution of wildfire to PM2.5 trends in the USA. Nature 622, 761–766 (2023).
Article
Google Scholar
Xu, R. et al. Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 621, 521–529 (2023).
Article
Google Scholar
Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).
Article
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Article
Google Scholar
Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).
Article
Google Scholar
Shakesby, R. A. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci. Rev. 105, 71–100 (2011).
Article
Google Scholar
Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
Article
Google Scholar
He, Y. et al. Formation of secondary organic aerosol from wildfire emissions enhanced by long-time ageing. Nat. Geosci. 17, 124–129 (2024).
Article
Google Scholar
Yu, P. et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science 365, 587–590 (2019).
Article
Google Scholar
Bernath, P., Boone, C. & Crouse, J. Wildfire smoke destroys stratospheric ozone. Science 375, 1292–1295 (2022).
Article
Google Scholar
Yu, P. et al. Persistent stratospheric warming due to 2019–2020 Australian wildfire smoke. Geophys. Res. Lett. 48, e2021GL092609 (2021).
Article
Google Scholar
Chen, H., Samet, J. M., Bromberg, P. A. & Tong, H. Cardiovascular health impacts of wildfire smoke exposure. Part. Fibre Toxicol. 18, 2 (2021).
Article
Google Scholar
Aguilera, R., Corringham, T., Gershunov, A. & Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California. Nat. Commun. 12, 1493 (2021).
Article
Google Scholar
Zhang, Y. et al. Respiratory risks from wildfire-specific PM2.5 across multiple countries and territories. Nat. Sustain. https://doi.org/10.1038/s41893-025-01533-9 (2025).
Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066 (2015).
Article
Google Scholar
Bansal, A. et al. Heatwaves and wildfires suffocate our healthy start to life: time to assess impact and take action. Lancet Planet. Health 7, e718–e725 (2023).
Article
Google Scholar
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Article
Google Scholar
Gao, M. et al. Future intensification of co-occurrences of heat, PM2.5 and O3 extremes in China and India despite stringent air pollution controls. Environ. Res. Lett. 20, 014044 (2025).
Article
Google Scholar
Banzhaf, S., Ma, L. & Timmins, C. Environmental justice: the economics of race, place, and pollution. J. Econ. Perspect. 33, 185–208 (2019).
Article
Google Scholar
Ducros, G. et al. Multi-hazards in Scandinavia: impacts and risks from compound heatwaves, droughts and wildfires. EGUsphere 2024, 1–25 (2024).
Google Scholar
Mario, E. et al. Coupling heat wave and wildfire occurrence across multiple ecoregions within a Eurasia longitudinal gradient. Sci. Total Environ. 912, 169269 (2024).
Article
Google Scholar
Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).
Article
Google Scholar
Vitolo, C., Di Napoli, C., Di Giuseppe, F., Cloke, H. L. & Pappenberger, F. Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environ. Int. 127, 21–34 (2019).
Article
Google Scholar
Chen, C., Schwarz, L., Rosenthal, N., Marlier, M. E. & Benmarhnia, T. Exploring spatial heterogeneity in synergistic effects of compound climate hazards: extreme heat and wildfire smoke on cardiorespiratory hospitalizations in California. Sci. Adv. 10, eadj7264 (2024).
Article
Google Scholar
Ratajczak, Z. et al. The combined effects of an extreme heatwave and wildfire on tallgrass prairie vegetation. J. Veg. Sci. 30, 687–697 (2019).
Article
Google Scholar
Cleland, S. E., Paul, N., Coker, E. S. & Henderson, S. B. The co-occurrence of wildfire smoke and extreme heat events in British Columbia, 2010–2022: evaluating spatiotemporal trends and inequities in exposure burden. ACS ES&T Air 2, 319–330 (2025).
Article
Google Scholar
Zheng, Y., Davis, S. J., Persad, G. G. & Caldeira, K. Climate effects of aerosols reduce economic inequality. Nat. Clim. Change 10, 220–224 (2020).
Article
Google Scholar
Alizadeh, M. R. et al. Increasing Heat-Stress Inequality in a Warming Climate. Earths Future 10 https://doi.org/10.1029/2021ef002488 (2022).
Mashhoodi, B. & Kasraian, D. Heatwave exposure inequality: an urban-rural comparison of environmental justice. Appl. Geogr. 164 https://doi.org/10.1016/j.apgeog.2024.103216 (2024).
Bai, K. et al. LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics. Earth Syst. Sci. Data 16, 2425–2448 (2024).
Article
Google Scholar
Jones-Ngo, C. G. et al. Increasing exposures to compound wildfire smoke and extreme heat hazards in California, 2011–2020. Earths Future 13 https://doi.org/10.1029/2024ef005189 (2025).
Brulle, R. J. & Pellow, D. N. Environmental justice: human health and environmental inequalities. Annu. Rev. Public Health 27, 103–124 (2006).
Article
Google Scholar
Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).
Article
Google Scholar
Mukherjee, S., Mishra, A. K., Zscheischler, J. & Entekhabi, D. Interaction between dry and hot extremes at a global scale using a cascade modeling framework. Nat. Commun. 14, 277 (2023).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. 146, 1999–2049 (2020).
Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
Article
Google Scholar
Lebakula, V. et al. LandScan Global (Oak Ridge National Laboratory, Oak Ridge, TN, 2024).
Kummu, M., Kosonen, M. & Masoumzadeh Sayyar, S. Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990–2022. Sci. Data 12, 178 (2025).
Article
Google Scholar
Wu, S. et al. Local mechanisms for global daytime, nighttime, and compound heatwaves. npj Clim. Atmos. Sci. 6 https://doi.org/10.1038/s41612-023-00365-8 (2023).
Al-Yaari, A., Zhao, Y., Cheruy, F. & Thiery, W. Heatwave characteristics in the recent climate and at different global warming levels: a multimodel analysis at the global scale. Earths Future 11 https://doi.org/10.1029/2022ef003301 (2023).
Wang, C. et al. Changes in global heatwave risk and its drivers over one century. Earths Future 12 https://doi.org/10.1029/2024ef004430 (2024).
White, R. H. et al. The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 14, 727 (2023).
Article
Google Scholar
Yin, J. et al. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain. 6, 259–272 (2023).
Article
Google Scholar
Chen, B. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 13, 4636 (2022).
Article
Google Scholar
Ceriani, L. & Verme, P. The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J. Econ. Inequal. 10, 421–443 (2012).
Article
Google Scholar
Steinbeis, F., Gotham, D., von Philipsborn, P. & Stratil, J. M. Quantifying changes in global health inequality: the Gini and Slope Inequality Indices applied to the Global Burden of Disease data, 1990-2017. BMJ Glob. Health 4, e001500 (2019).
Article
Google Scholar
Song, Y. et al. Observed inequality in urban greenspace exposure in China. Environ Int 156, 106778 (2021).
Article
Google Scholar
Wang, Y. et al. Global future population exposure to heatwaves. Environ. Int. 178, 108049 (2023).
Article
Google Scholar
McKight, P. E. & Najab, J. in The Corsini Encyclopedia of Psychology (Wiley, 2010).
Jason, G. S. et al. An index for assessing demographic inequalities in cumulative environmental hazards with application. Environ. Sci. Technol. 43, 7626–7634 (2009).
Article
Google Scholar
Su, J. G., Jerrett, M., Morello-Frosch, R., Jesdale, B. M. & Kyle, A. D. Inequalities in cumulative environmental burdens among three urbanized counties in California. Environ. Int. 40, 79–87 (2012).
Article
Google Scholar