Nordet, G. et al. Influence of laser wavelength on the powder bed fusion of pure copper. Prog. Addit. Manuf. 10, 1489–1509 (2025).
Google Scholar
Calignano, F., Bove, A. & Pavese, M. Processing of pure copper by powder bed fusion with infrared laser. Results Eng. 25, 104497 (2025).
Google Scholar
Jiang, Q. et al. A review on additive manufacturing of pure copper. Coatings 11, 740 (2021). https://doi.org/10.3390/coatings11060740 (2021).
Google Scholar
De Terris, T., Baffie, T. & Ribière, C. Additive manufacturing of pure copper: A review and comparison of physical, microstructural, and mechanical properties of samples manufactured with laser-powder bed fusion (L-PBF), electron beam melting (EBM) and metal fused deposition modelling (MFDM) technologies. Int. J. Mater. Form. 16, 32 (2023).
Google Scholar
Tiismus, H., Kallaste, A., Vaimann, T. & Rassõlkin, A. State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines. Addit. Manuf. 55, 102778 (2022). https://doi.org/10.1016/j.addma.2022.102778 (2022).
Google Scholar
Nocheseda, C. J. C., Liza, F. P., Collera, A. K. M., Caldona, E. B. & Advincula, R. C. 3D printing of metals using biodegradable cellulose hydrogel inks. Addit. Manuf. 48, 102380 (2021).
Google Scholar
Miyanaji, H. et al. Binder jetting additive manufacturing of copper foam structures. Addit. Manuf. 32, 100960 (2020).
Google Scholar
Singh, G., Missiaen, J. M., Bouvard, D. & Chaix, J. M. Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization. Addit. Manuf. 38, 101778 (2021).
Google Scholar
Miyanaji, H., Rahman, K. M., Da, M. & Williams, C. B. Effect of fine powder particles on quality of binder jetting parts. Addit. Manuf. 36, 101587 (2020).
Google Scholar
Jadhav, S. D., Goossens, L. R., Kinds, Y., Van Hooreweder, B. & Vanmeensel, K. Laser-based powder bed fusion additive manufacturing of pure copper. Addit. Manuf. 42, 101990 (2021).
Google Scholar
Hazeli, K., June, D., Anantwar, P. & Babamiri, B. B. Mechanical behavior of additively manufactured GRCop-84 copper alloy lattice structures. Addit. Manuf. 56, 102928 (2022).
Google Scholar
Kolli, S. et al. Process optimization and characterization of dense pure copper parts produced by paste-based 3D micro-extrusion. Addit. Manuf. 73, 103670 (2023).
Google Scholar
Speidel, A. et al. Chemical recovery of spent copper powder in laser powder bed fusion. Addit. Manuf. 52, 102711 (2022).
Google Scholar
Santo, L. et al. American Institute of Physics Inc. Local density measurement of additive manufactured copper parts by instrumented indentation. In AIP Conference Proceedings , vol. 1960 (2018).
Qu, S., Wang, L., Ding, J., Lu, Y. & Song, X. Influence of heat treatment on the microstructure and mechanical properties of pure copper components fabricated via Micro-Laser powder bed fusion. Materials 17, 6270 (2024).
Google Scholar
Wei, Y. et al. Microstructures and mechanical properties of pure copper manufactured by high-strength laser powder bed fusion. Opt. Laser Technol. 182, 112134 (2025).
Google Scholar
Robinson, J. et al. Electrical conductivity of additively manufactured copper and silver for electrical winding applications. Materials 15, 7563 (2022).
Google Scholar
Tertuliano, O. A. et al. Nanoparticle-enhanced absorptivity of copper during laser powder bed fusion. Addit. Manuf. 51, 102562 (2022).
Google Scholar
Qu, S., Ding, J., Fu, J., Fu, M. & Song, X. Anisotropic material properties of pure copper with fine-grained microstructure fabricated by laser powder bed fusion process. Addit. Manuf. 59, 103082 (2022).
Google Scholar
Jadhav, S. D. et al. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 270, 47–58 (2019).
Google Scholar
Fu, Z., Ye, J., Franke, M. & Körner, C. A novel approach for powder bed-based additive manufacturing of compositionally graded composites. Addit. Manuf. 56, 102916 (2022).
Google Scholar
Qu, S. et al. High-precision laser powder bed fusion processing of pure copper. Addit. Manuf. 48, 102417 (2021).
Google Scholar
Romano, T. et al. Pure copper membranes manufactured by green laser powder bed fusion with varying wall-thickness and building orientation: Microstructure, properties, and vacuum tightness performance. Vacuum 233, 113995 (2025).
Google Scholar
Wang, D., Li, K., Yao, J., Du, B. & Xu, Y. Porosity, texture, and mechanical properties of pure copper fabricated by fine green laser powder bed fusion. Opt. Laser Technol. 181, 112009 (2025).
Google Scholar
Thomas, A. et al. Effect of the build orientation on mechanical and electrical properties of pure Cu fabricated by E-PBF. Addit. Manuf. 48, 102393 (2021).
Google Scholar
Jadhav, S. D., Vleugels, J., Kruth, J. P., Van Humbeeck, J. & Vanmeensel, K. Mechanical and electrical properties of selective laser-melted parts produced from surface-oxidized copper powder. Mater. Des. Process. Commun. 2, e94 (2020).
Google Scholar
Jadhav, S. D. et al. Influence of carbon nanoparticle addition (and impurities) on selective laser melting of pure copper. Materials 12, 2469 (2019).
Google Scholar
Huang, J. et al. Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology. Surf. Coat. Technol. 395, 125936 (2020).
Google Scholar
Yan, X. et al. Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Mater. Sci. Eng. A. 789, 139615 (2020).
Google Scholar
Ikeshoji, T. T., Nakamura, K., Yonehara, M., Imai, K. & Kyogoku, H. Selective laser melting of pure copper. JOM 70, 396–400 (2018).
Google Scholar
Colopi, M., Caprio, L., Demir, A. G. & Previtali, B. Selective laser melting of pure Cu with a 1 kW single mode fiber laser. Procedia CIRP. 74, 59–63 (2018).
Google Scholar
Colopi, M., Demir, A. G., Caprio, L. & Previtali, B. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. Int. J. Adv. Manuf. Technol. 104, 2473–2486 (2019).
Google Scholar
Hu, R. et al. Process of pure copper fabricated by selective laser melting (SLM) technology under moderate laser power with re-melting strategy. Materials 16, 2642 (2023).
Google Scholar
Aghayar, Y. et al. Laser powder bed fusion of pure copper electrodes. Mater. Des. 239, 112742 (2024).
Google Scholar
Nagy, P. B. Surface roughness influence on eddy current electrical conductivity measurements (2003). https://www.researchgate.net/publication/279890948.
Corona, D., Giannini, O., Guarino, S., Ponticelli, G. S. & Zarcone, M. Experimental investigation on the electrical, thermal, and mechanical properties of laser powder bed fused copper alloys. J. Manuf. Process. 76, 320–334 (2022).
Google Scholar
Gargalis, L. et al. Determining processing behaviour of pure Cu in laser powder bed fusion using direct micro-calorimetry. J Mater. Process. Technol. 294, 117130 (2021).
Google Scholar
Gao, S. et al. High-strength and high-conductivity pure copper by powder bed fusion with a medium-power infrared laser. Mater. Des. 258, 114551 (2025).
Google Scholar
Megahed, S. et al. Manufacturing of pure copper with electron beam melting and the effect of thermal and abrasive post-processing on microstructure and electric conductivity. Materials 16, 73 (2023).
Google Scholar
Ortmann, R. et al. Powder bed fusion of pure copper using an electron beam: A comparative study on the material properties obtained using vector- and spot-based exposure. Prog. Addit. Manuf. https://doi.org/10.1007/s40964-025-01344-6 (2025).
Google Scholar
Mao, Q., Zhang, Y., Guo, Y. & Zhao, Y. Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire. Commun. Mater. 2, 46 (2021).
Google Scholar
Li, X. et al. Texture evolution and its influence mechanism on properties of single crystal copper and polycrystalline copper during cumulative deformation. J. Mater. Res. Technol. 24, 6808–6819 (2023).
Google Scholar