Category: 3. Business

  • China refiner Yanchang Petroleum shuns Russian oil in latest tender, traders say

    China refiner Yanchang Petroleum shuns Russian oil in latest tender, traders say

    SINGAPORE, Nov 11 (Reuters) – Chinese provincial government-backed refiner Yanchang Petroleum is avoiding Russian oil in its latest crude oil tender for deliveries between December and mid-February,two traders with knowledge of the matter said on Tuesday.

    Yanchang, located in the landlocked northern province of Shaanxi, has been a regular buyer of Russian oil, typically taking in one shipment per month, usually Far East export grade ESPO blend or Sokol, one of the traders said.

    Sign up here.

    Yanchang did not immediately respond to a request for comment.

    A raft of recent western sanctions on Russian oil shipments, including U.S. measures last month against Moscow’s top two exporters, has led China’s state oil companies and some Indian refiners to avoid buying Russian oil due to concerns about falling foul of secondary sanctions.

    China and India are Russia’s top oil export markets.

    Yanchang, which can process 348,000 barrels of crude per day, is one of the largest refiners in inland China and is entitled to an annual import quota of 3.6 million metric tons or 26 million barrels.

    The refiner typically receives imported crude from Tianjin port, near Beijing, where the oil is shipped to it by rail.

    Reporting by Chen Aizhu and Florence Tan; Additional reporting by Siyi Liu; Editing by Himani Sarkar and Tony Munroe

    Our Standards: The Thomson Reuters Trust Principles., opens new tab

    Continue Reading

  • Ireland’s construction slump eases as contraction enters sixth month

    (Alliance News) – Ireland’s construction activity continued to fall in October, though commercial construction returned to growth in contrast to the other sub sectors, S&P Global reported Tuesday.

    The AIB Ireland construction purchasing managers’ index rose to 48.1 in October from 43.7 in September.

    A reading above the 50.0 neutral mark indicates an overall increase in business activity from the previous month, while a reading below signals a contraction.

    Although the latest figure indicates that the downturn in Ireland’s construction sector has eased with the softest decline in activity recorded since June, contraction nonetheless has extended into the sixth successive month.

    “The sectoral breakdown showed a divergence in performance among the three sub sectors. Commercial construction activity ended its two-month period of contraction, returning to growth, albeit marginally last month. Civil engineering continued to post declining activity levels, but at a less severe rate compared to September. In contrast, residential activity saw an acceleration in the pace of contraction,” said John Fahey, AIB senior economist.

    Furthermore, staffing levels in the sector fell for the second month running, as input costs rose sharply with firms citing higher fuel and raw material costs.

    “There were signs of stabilisation in new orders in October. The latest decline was only marginal and the weakest in the current three-month sequence of contraction as some firms reported being busier,” S&P Global explained.

    Looking ahead, optimism regarding the possibility of increasing activity levels over the next twelve months improved to the highest level since June, with 29% of those questioned anticipating an increase in output.

    S&P Global compiles the PMI each month using survey responses from a panel of around 150 construction companies.

    By Elijah Dale, Alliance News senior reporter Asia-Pacific

    Comments and questions to newsroom@alliancenews.com

    Copyright 2025 Alliance News Ltd. All Rights Reserved.

    Continue Reading

  • Sony raises profit forecast after earnings beat, boosted by Music and Imaging divisions

    Sony raises profit forecast after earnings beat, boosted by Music and Imaging divisions

    The Sony Group Corp. logo displayed on a screen at the Combined Exhibition of Advanced Technologies (Ceatec) in Chiba, Japan, on Wednesday, Oct. 16, 2024.

    Bloomberg | Bloomberg | Getty Images

    Sony Group on Tuesday reported an increase in its second-quarter operating profit that beat expectations, while announcing a share buyback of up to 100 billion Japanese yen ($648 million).

    Here are Sony’s second-quarter results compared with LSEG SmartEstimates, which are weighted toward forecasts from analysts who are more consistently accurate: 

    • Revenue: 3.108 trillion Japanese yen vs. 2.985 trillion yen expected
    • Operating profit: 429 billion yen vs. 398.44 billion yen expected

    Sony’s operating profit jumped 10% compared to the same period last year, while revenues were up 5% 

    The Japanese technology giant said it now expects operating profit for its fiscal year to increase by 100 billion yen, or 8% above its previous forecast, driven by gains from its Imaging & Sensing Solutions and Music segments. The company also raised its annual revenue outlook by 300 billion yen, or 3%. 

    That came as Sony saw strength in its game and network services division, which houses its popular PlayStation home console brand. Representing Sony’s top revenue driver, the division posted sales of 1.113 trillion yen, up 3.9% year over year.

    Game and network services have performed well in recent quarters thanks to a shift to digital game purchases and the PlayStation Plus subscription service. Growth in hardware shipments has been comparably muted.

    The company also saw substantial growth in its music business — its second-largest segment — with sales up over 20% from the same period last year. Revenue from its Imaging & Sensing Solutions business also grew 14.75%.

    KPop Demon Hunters

    Despite the strong showing, its picture business sales shrank about 2.75% year over year. That was despite Sony Pictures Animation being behind this year’s smash hit production, KPop Demon Hunters, which premiered on June 20. 

    The film, which was produced by Sony, has reportedly become the most popular Netflix film ever, and continues to break streaming records, even for its original soundtrack. 

    Despite the success, Sony has missed much of this upside due to selling the film’s exclusive rights to Netflix.

    While the exact details of the deal are unknown, it was reported that Sony made an initial $25 million profit from producing the film for Netflix.

    Netflix saw KPop Demon Hunters drive significant viewership and even contribute to its 17% revenue jump in its September quarter.

    However, in a bright spot for Sony, a sequel to the movie has already been confirmed, with Netflix reportedly providing the Japanese company a $15 million cash bonus for the first film’s performance. 

    Continue Reading

  • New drug combination gains Fast Track Designation for metastatic colorectal cancer

    New drug combination gains Fast Track Designation for metastatic colorectal cancer

    The U.S. Food and Drug Administration has granted Fast Track Designation to a new drug combination for metastatic colorectal cancer, following encouraging results from a clinical trial led in part by the University of Oklahoma Health Stephenson Cancer Center. The treatment offers potential hope for patients whose tumors lack a key DNA repair protein called ATM.

    The drug combination pairs alnodesertib, a targeted therapy that blocks cancer cells’ ability to repair DNA damage, and a low dose of irinotecan, a chemotherapy drug that causes that damage. Together, the drugs exploit a weakness in cancer cells that are already deficient in the ATM protein.

    In the trial, a substantial number of patients with ATM-deficient tumors who received the treatment experienced reductions in the size of their cancers.

    “We consider this a triple hit because we target the cancer in three different ways. We target the right tumor (those with ATM deficiency) and then we attack it with two treatments that work synergistically, one that damages the DNA and the other that prevents the cancer cell from repairing the DNA and surviviving,” said Susanna Ulahannan, M.D., OU Health oncologist and associate professor in the OU College of Medicine, who was the national principal investigator for the cohort of colorectal cancer patients. “The treatment responses we have seen are very exciting, and they are in a patient group that has very few options.”

    Like other forms of chemotherapy, irinotecan damages the DNA of cancer cells. Normally, a protein called ATR would try to repair that damage before the cells divide again. But alnodesertib, an ATR inhibitor, blocks the repair signal, preventing cancer cells from recovering and multiplying. This mechanism is particularly effective in cancers that already have defective repair systems, such as those lacking ATM.

    The drug combination’s Fast Track Designation is for patients who have already received at least two rounds of other colorectal cancer treatments that have not been effective. Alnodesertib is from Artios Pharma Limited and was tested in the STELLA clinical trial.

    According to the American Cancer Society, more than 154,000 people will be diagnosed with colorectal cancer in 2025, and 52,000 people are expected to die from the disease. The lifetime risk of developing colorectal cancer is 1 in 24 for men and 1 in 26 for women.

    We have had only two good treatment options for metastatic colorectal cancer, so there is a very high unmet need. While colorectal cancer overall is declining, it is increasing in people under 50. We are seeing young, otherwise healthy patients who have limited treatment options. This clinical trial has produced very promising results.”


    Susanna Ulahannan, M.D., OU Health oncologist and associate professor, OU College of Medicine

    Continue Reading

  • Everything You Need To Know Ahead Of Earnings

    Everything You Need To Know Ahead Of Earnings

    Networking technology giant Cisco (NASDAQ:CSCO) will be reporting earnings this Wednesday afternoon. Here’s what to look for.

    Cisco met analysts’ revenue expectations last quarter, reporting revenues of $14.67 billion, up 7.6% year on year. It was a mixed quarter for the company, with revenue guidance for next quarter slightly topping analysts’ expectations but billings in line with analysts’ estimates.

    Is Cisco a buy or sell going into earnings? Read our full analysis here, it’s free for active Edge members.

    This quarter, analysts are expecting Cisco’s revenue to grow 6.7% year on year to $14.76 billion, a reversal from the 5.6% decrease it recorded in the same quarter last year. Adjusted earnings are expected to come in at $0.98 per share.

    Cisco Total Revenue

    Analysts covering the company have generally reconfirmed their estimates over the last 30 days, suggesting they anticipate the business to stay the course heading into earnings. Cisco has a history of exceeding Wall Street’s expectations, beating revenue estimates every single time over the past two years by 0.6% on average.

    Looking at Cisco’s peers in the it services & other tech segment, some have already reported their Q3 results, giving us a hint as to what we can expect. Applied Digital delivered year-on-year revenue growth of 84.3%, beating analysts’ expectations by 17.6%, and IonQ reported revenues up 222%, topping estimates by 47.8%. Applied Digital traded up 16.1% following the results while IonQ was also up 3.7%.

    Read our full analysis of Applied Digital’s results here and IonQ’s results here.

    Investors in the it services & other tech segment have had fairly steady hands going into earnings, with share prices down 1.3% on average over the last month. Cisco is up 6.9% during the same time and is heading into earnings with an average analyst price target of $76.96 (compared to the current share price of $72.11).

    P.S. STOP buying the AI stocks everyone’s talking about. The real money? It’s in the profitable pick nobody’s watching yet. We’ve identified an AI profit machine that’s flying under Wall Street’s radar—for now. We can’t keep this research public forever—grab your FREE copy before we pull it offline. GO HERE NOW.

    StockStory is growing and hiring equity analyst and marketing roles. Are you a 0 to 1 builder passionate about the markets and AI? See the open roles here.

    Continue Reading

  • The all-new Hyundai VENUE and Hyundai VENUE N Line Make Their Global Debut

    Assertive Exteriors:

    The all-new Hyundai VENUE commands the road with its confident stance, powerful unique language and a striking presence. The SUV’s confident stance is underscored by its taller and wider body dimensions, reinforcing a powerful and unique SUV imagery.

    Key Exterior highlights:

    • Dimensions (mm): 3995 (Length) * 1800 (Width) * 1665 (Height) * 2520 (Wheelbase)
    • Taller and Wider Dimensions (48 mm taller and 30 mm wider than the existing VENUE)
    • Quad beam LED headlamps
    • Twin horn LED DRLs
    • Horizon LED positioning lamp
    • Rear horizon LED tail lamps
    • Dark chrome radiator grille
    • Bridge type roof rails
    • Signature C-pillar garnish
    • In-Glass VENUE emblem

    Stylish Interiors:

    The interiors of the all-new Hyundai VENUE are designed to offer a connected lifestyle-first experience. It redefines urban driving with its stylish and spacious interiors, blending modern design and premium materials. Thoughtfully crafted for comfort and versatility, it offers ample room for both front and rear passengers, crafting each journey as a testament to refined elegance and smart design

    Key Interior Highlights:

    • Long wheelbase – 2520mm (20 mm longer than the existing VENUE)
    • Dual 62.5 cm (12.3” + 12.3”) Curved Panoramic displays
    • Rear window sunshade
    • Dual tone leather^ seats with VENUE branding
    • Coffee table centre console with Surround ambient lighting
    • Ambient lighting (Moon white) on crash pad
    • Terrazzo-textured crash pad finish
    • Premium leather^ armrest
    • D-Cut steering wheel
    • Electric 4-way driver seats
    • 2-Step reclining rear seats
    • Rear AC vents

    Trailblazing Technology:

    The all-new Hyundai VENUE is a leap forward in connected technology, redefining in-car convenience and digital experiences. With the debut of Hyundai’s advanced ccNC (Connected Car Navigation Cockpit) accelerated by NVIDIA, the all-new Hyundai VENUE comes with a stunning 31.24 cm (12.3”) ccNC Navigation system that puts the world at your fingertips. The new compact SUV isn’t just a car, it’s your personalized entertainment hub, your tech-savvy co-pilot and your gateway to seamless innovation.

    Key Technology Highlights:

    • 31.24 cm (12.3”) ccNC Navigation system, Accelerated by NVIDIA
    • 31.24 cm (12.3”) Full digital display cluster
    • Bose premium sound 8 speaker system
    • Front row ventilated seats
    • Surround view monitor (SVM)
    • Wireless Android Auto/Apple CarPlay
    • Voice enabled smart electric sunroof
    • Upto 20 controllers capable of Over-the-Air (OTA) vehicle updates
    • 70 Hyundai blue link connected car features
    • Blind Spot view monitor (BVM)

    Advanced Safety:

    Safety takes the spotlight in the all-new Hyundai VENUE, delivering a fortified driving experience through enhanced structural integrity, cutting-edge driver assistance and a full suite of standard safety features. With Hyundai SmartSense ADAS Level 2 with 16 intelligent features and a reinforced body crafted from 71% expansive application of – hot stamping, ultra-high strength steel, advanced high strength steel and high strength steel, the all-new Hyundai VENUE is engineered to provide uncompromising protection and total peace of mind – every time you hit the road.

    Key Safety features:

    • More than 65 advanced safety features, including 33 safety features as standard across all variants
    • Electronic stability control (ESC)
    • Hill-start assist control (HAC)
    • Electric parking brake with auto hold
    • Surround view monitor (SVM)
    • All 4-disc brakes
    • 6 airbags
    • Tyre pressure monitoring system (tpms) – Highline
    • Electro chromic mirror (ECM) with telematics switches
    • 3-point seatbelts with reminder for all seats
    • Rollover sensor

    Refined Performance:

    The all-new Hyundai VENUE is meticulously engineered to deliver an exhilarating driving experience, combining refined performance with a versatile range of powertrain options. Bold and dynamic, this upcoming compact SUV fuses cutting-edge drive technologies with precision-tuned capabilities that transform every road into a playground. Whether you’re chasing efficiency or craving spirited acceleration, the all-new Hyundai VENUE offers a comprehensive lineup of powertrains tailored to meet diverse driving styles and preferences. Enhanced by intelligent drive control configurations, it ensures a seamless blend of power, agility and smooth handling across all terrains.

    Key Performance Highlights:
    Customers will have a wide range of powertrains to choose from, including Kappa 1.2 l MPi petrol, Kappa 1.0 l Turbo GDi petrol and U2 1.5 l CRDi Diesel.

    • Kappa 1.2 l MPi petrol: A smooth, dependable and perfect powertrain for everyday driving, paired with a 5-speed manual transmission.
    • Kappa 1.0 l Turbo GDi petrol: A turbo beast that offers thrilling acceleration to those craving a more powerful experience. The powertrain is engineered for peak performance and is paired with a 6-speed manual transmission & advanced 7-speed DCT transmission with idle stop and go (ISG).
    • U2 1.5 l CRDi Diesel: Engineered for those who demand performance without compromise, this diesel powertrain delivers an impressive performance with stellar fuel economy. The powertrain will be available in both 6-speed manual and newly introduced 6-speed automatic transmission options.


    Continue Reading

  • Asian Stocks Erase Gains as Chinese Shares Decline: Markets Wrap

    Asian Stocks Erase Gains as Chinese Shares Decline: Markets Wrap

    (Bloomberg) — Asian stocks erased an earlier gain as losses in Chinese shares offset optimism about progress toward ending the record-long US government shutdown.

    MSCI’s regional stock gauge was little changed after earlier rising as much as 0.5%. Chipmakers such as SK Hynix Inc. and Samsung Electronics Co. were among the biggest gainers. Shares in mainland China fell 0.8%.

    US benchmarks rose Monday and the MSCI All Country World Index had its best day since late June as the White House expressed support for the bipartisan deal to end the shutdown. Separately, President Donald Trump also floated the idea of paying $2,000 tariff “dividend” to US citizens.

    The optimism spread beyond stocks into other markets as well, with a gauge of commodity prices rising to the highest level since August 2022. An index of the dollar inched higher, while gold and Bitcoin extended gains.

    The cross-asset moves signaled investors were willing to return to riskier areas of the market after the recent selling in technology stocks, driven by concerns over lofty valuations. Many are betting that reopening the US government will restore the flow of key economic data on jobs and inflation, providing greater clarity on the Federal Reserve’s policy path.

    “Markets are right now going through a bit of a consolidation phase,” Leon Goldfeld, JPMorgan Asset Management’s Asia Pacific head of multi-asset solutions, said in a Bloomberg TV interview. “Fundamentals, as we look in 2026, remain relatively good.”

    A record-setting 41-day US government shutdown is on a path to end as soon as Wednesday after the Senate passed a temporary funding measure backed by a group of eight centrist Democrats.

    The Senate’s 60-40 vote Monday comes amid escalating flight disruptions, food aid delays and frustrations in a federal workforce that has mostly gone without pay for more than a month.

    While investors piled on to the riskier corners of the market, bonds declined Monday. Treasuries are also facing a demand test from this week’s auctions totaling $125 billion. The US bond market will be closed worldwide Tuesday for Veterans Day.

    Commodities also rallied, with aluminum advancing alongside copper and other industrial metals. Aluminum, which reached a three-year high a week ago, has been one of the strongest performers on the London Metal Exchange in recent months, with investors weighing the impact of Chinese capacity curbs at a time of resilient demand.

    Gold rose for a third day to trade above $4,130 an ounce on expectations that the Fed will reduce interest rates further. Brent crude was little changed near $64 a barrel.

    Elsewhere, Japanese Prime Minister Sanae Takaichi aims to use her first stimulus package to jump-start the economy and initiate a new growth strategy through investment in key industries.

    Indian assets will also be in focus as Trump indicated he would reduce the tariff rate on Indian goods “at some point,” and that the US was “pretty close” to a trade deal with New Delhi.

    Back to the US government reopening, historical precedent from the 2013 shutdown suggests that September’s employment report could be among the first to hit the wires, potentially within three business days of reopening, according to Jim Reid at Deutsche Bank.

    Assuming the government reopens and statistics start moving again, Fed officials will still be confronted with data compiled via retroactive surveys and other methods — if the figures are published at all. And while several private-sector reports on the job market are helping to fill the void of official data, alternatives to government inflation figures are harder to come by and more limited in scope.

    Corporate News:

    Warren Buffett, the billionaire investor who turned an aging textile mill into a conglomerate, said he’s “going quiet,” marking the end of an era for one of the business world’s most-watched investing gurus. CoreWeave Inc. lowered its annual revenue forecast after suffering a delay fulfilling a customer contract, marking a setback for a company that is racing to keep up with the artificial intelligence boom. Gemini Space Station Inc., the crypto exchange founded by Tyler and Cameron Winklevoss, reported a steeper loss than analysts anticipated in its first earnings release since going public. The European Commission is exploring ways to force European Union member states to phase out Huawei Technologies Co. and ZTE Corp. from their telecommunications networks, according to people familiar with the matter. Xpeng Inc. shares surged to their highest level in eight months, amid growing optimism over the Chinese electric carmaker’s progress in technologies including humanoid robots. Shares of SoftBank Group Corp. rose in Japan ahead of the company’s earnings. The company is expected to log its third straight quarterly profit when it announces earnings later Tuesday.

    Some of the main moves in markets:

    Stocks

    S&P 500 futures were little changed as of 11:57 a.m. Tokyo time Japan’s Topix rose 0.2% Australia’s S&P/ASX 200 was little changed Hong Kong’s Hang Seng fell 0.5% The Shanghai Composite fell 0.6% Euro Stoxx 50 futures rose 0.5% Currencies

    The Bloomberg Dollar Spot Index rose 0.1% The euro was little changed at $1.1553 The Japanese yen fell 0.1% to 154.37 per dollar The offshore yuan was little changed at 7.1262 per dollar Cryptocurrencies

    Bitcoin rose 0.9% to $106,550.59 Ether rose 2% to $3,611.71 Bonds

    Japan’s 10-year yield was unchanged at 1.695% Australia’s 10-year yield was little changed at 4.40% Commodities

    West Texas Intermediate crude fell 0.3% to $59.95 a barrel Spot gold rose 0.5% to $4,137.57 an ounce This story was produced with the assistance of Bloomberg Automation.

    –With assistance from Richard Henderson and Abhishek Vishnoi.

    ©2025 Bloomberg L.P.

    Continue Reading

  • Rupee to draw support from Trump’s trade optimism, curbed by firm dollar – Reuters

    1. Rupee to draw support from Trump’s trade optimism, curbed by firm dollar  Reuters
    2. USD/INR trades firmly while US Senate approves bill to end shutdown  FXStreet
    3. India’s Rupee Holds Steady As Central Bank Steps In  Finimize
    4. The Indian Rupee remains stable against the US Dollar, with the USD/INR pair around 88.80  VT Markets
    5. Indian Rupee Declines to 88.71 Against US Dollar as Oil Prices Rise  India News Network

    Continue Reading

  • Wiggles admit likely consumer law breach over Emma Bow headbands with button batteries | The Wiggles

    Wiggles admit likely consumer law breach over Emma Bow headbands with button batteries | The Wiggles

    Children’s entertainers the Wiggles have admitted to selling headbands to kids without warning about the dangers of button batteries contained within the products.

    More than 3,100 Emma Bow headbands, which have four flashing lights powered by button batteries, were sold at live concerts, retailers and online between June 2022 and March 2024.

    A legally enforceable undertaking signed by the blue Wiggle, Anthony Field, outlined the Wiggles’ admission that failing to include a headband safety warning likely breached Australian consumer law.

    Sign up: AU Breaking News email

    The yellow and black Emma Bow headbands were recalled in August 2024 by the manufacturer CA Australia over safety concerns for young children who could choke by ingesting the small, shiny batteries.

    In a statement by the ACCC on Tuesday, its deputy chair, Catriona Lowe, said button batteries posed a significant risk to young children and mandatory standards were important in helping to prevent injuries.

    “Without a warning on the product, parents may not have known it contained button batteries and not understood the severity of the risk,” Lowe said.

    “If swallowed, a button battery can become stuck in a child’s throat and result in catastrophic injuries, and even death, in as little as two hours.”

    As part of its cooperation with the ACCC’s investigation, the Wiggles committed to produce an episode of its Wiggle Talk podcast discussing safety issues relating to button batteries and children’s toys.

    The manufacturer also pledged to improve its compliance with consumer law.

    Researchers have previously found approximately 200 children are potentially exposed to button battery injury in Australia each year, and at least a dozen experience severe injury.

    The batteries have also been linked to the deaths of three children in Australia, according to the watchdog, in incidents unrelated to the Emma Bow headbands.

    skip past newsletter promotion

    The safety admission is the latest legal trouble for the Wiggles after it was sued by its former CEO Luke O’Neill.

    The former boss launched legal action in the federal court in September, arguing he was dismissed without a reasonable basis by the group after complaining about the hiring of Field’s friends and family members.

    But the Wiggles denied the allegations and alleged the former CEO was fired because his “overall performance was not satisfactory” and necessary trust in him had been lost.

    A settlement was negotiated between both parties in October, news.com.au reported.

    Continue Reading

  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.

    Article 
    PubMed 

    Google Scholar 

  • Bilal M, Singh AK, Iqbal HMN, Boczkaj G. Enzyme-conjugated MXene nanocomposites for biocatalysis and biosensing. Chem Eng J. 2023;474:145020. https://doi.org/10.1016/j.cej.2023.145020.

    Article 

    Google Scholar 

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (part II). Chem Soc Rev. 2019;48:1004–76. https://doi.org/10.1039/c8cs00457a.

    Article 
    PubMed 

    Google Scholar 

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83. https://doi.org/10.1038/nnano.2007.260.

    Article 
    PubMed 

    Google Scholar 

  • Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F. Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev. 2021;429:213652. https://doi.org/10.1016/j.ccr.2020.213652.

    Article 

    Google Scholar 

  • Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 2021;13:154. https://doi.org/10.1007/s40820-021-00674-8.

    Article 

    Google Scholar 

  • Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, et al. When nanozymes meet single-atom catalysis. Angew Chem Int Ed. 2020;59:2565–76. https://doi.org/10.1002/anie.201905645.

    Article 

    Google Scholar 

  • Derry PJ, Liopo AV, Mouli K, McHugh EA, Vo ATT, McKelvey A, et al. Oxidation of hydrogen sulfide to polysulfide and thiosulfate by a carbon nanozyme: therapeutic implications with an emphasis on Down syndrome. Adv Mater. 2023;2211241. https://doi.org/10.1002/adma.202211241.

    Article 

    Google Scholar 

  • Sun Y, Xu B, Pan X, Wang H, Wu Q, Li S, et al. Carbon-based nanozymes: design, catalytic mechanism, and bioapplication. Coord Chem Rev. 2023;475:214896. https://doi.org/10.1016/j.ccr.2022.214896.

    Article 

    Google Scholar 

  • Xu R, Zhang S, Wang P, Zhang R, Lin P, Wang Y, et al. Nanozyme-based strategies for efficient theranostics of brain diseases. Coord Chem Rev. 2024;501:215519. https://doi.org/10.1016/j.ccr.2023.215519.

    Article 

    Google Scholar 

  • Zhang S, Zhang Y, Feng Y, Wu J, Hu Y, Lin L, et al. Biomineralized two-enzyme nanoparticles regulate tumor glycometabolism inducing tumor cell pyroptosis and robust antitumor immunotherapy. Adv Mater. 2022;34:2206851. https://doi.org/10.1002/adma.202206851.

    Article 

    Google Scholar 

  • Song N, Yu Y, Zhang Y, Wang Z, Guo Z, Zhang J, et al. Bioinspired hierarchical self-assembled nanozyme for efficient antibacterial treatment. Adv Mater. 2023;2210455. https://doi.org/10.1002/adma.202210455.

    Article 

    Google Scholar 

  • Molvin J, Jujic A, Holm H, Dieden A, Korduner J, Zaghi A, et al. Selenium deficiency is associated with anemia in heart failure patients – The HARVEST study. Eur Heart J. 2023. https://doi.org/10.1093/eurheartj/ehad655.905.

    Article 

    Google Scholar 

  • Stadtman TC. Selenium biochemistry. Science. 1974;183:915–22. https://doi.org/10.1126/science.183.4128.915.

    Article 
    PubMed 

    Google Scholar 

  • Jujić A, Melander O, Bergmann A, Hartmann O, Nilsson PM, Bachus E, et al. Selenoprotein p deficiency and risk of mortality and rehospitalization in acute heart failure. J Am Coll Cardiol. 2019;74:1009–11. https://doi.org/10.1016/j.jacc.2019.06.023.

    Article 
    PubMed 

    Google Scholar 

  • Yang W, Huang G, Chen F, Huang H. Extraction/synthesis and biological activities of selenopolysaccharide. Trends Food Sci Technol. 2021;109:211–8. https://doi.org/10.1016/j.tifs.2021.01.028.

    Article 

    Google Scholar 

  • Uppala PPT, Isaak S, Wong B, Ferreira K, Garberoglio C, Kelly J. Abstract P24: Evidenced-based natural therapies and immune-enhancing strategies to control, prevent, and treat co-morbidities COVID-19 and cancer. Clin Cancer Res. 2021;27:P24–24. https://doi.org/10.1158/1557-3265.covid-19-21-p24.

    Article 

    Google Scholar 

  • Gómez-Gómez B, Fernández-Bautista T, Madrid Y. (Bio)analytical approaches for investigating the role of selenium in preventing neurological disorders and neurotoxicity induced by environmental neurotoxicants: As, Cd, and hg. TRAC Trends Anal Chem. 2024;174:117661. https://doi.org/10.1016/j.trac.2024.117661.

    Article 

    Google Scholar 

  • Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev. 2013;42:8870–94. https://doi.org/10.1039/c3cs60272a.

    Article 
    PubMed 

    Google Scholar 

  • Mertz W. The essential trace elements. Science. 1981;213:1332–8. https://doi.org/10.1126/science.7022654.

    Article 
    PubMed 

    Google Scholar 

  • Rayman MP. The importance of selenium to human health. Lancet. 2000;356:233–41. https://doi.org/10.1016/s0140-6736(00)02490-9.

    Article 
    PubMed 

    Google Scholar 

  • Mousa R, Notis Dardashti R, Metanis N. Selenium and selenocysteine in protein chemistry. Angew Chem Int Ed. 2017;56:15818–27. https://doi.org/10.1002/anie.201706876.

    Article 

    Google Scholar 

  • Zhang X-L, Gu Y-Y, Liu Y-C, Cai Y-T, Sun H, Liu Y-X, et al. Near-infrared enhanced organic Se-doped carbon nitride quantum dots nanozymes as SOD/CAT mimics for anti-Parkinson via ROS-NF-κB-NLRP3 inflammasome axis. Chem Eng J. 2024;499:156028. https://doi.org/10.1016/j.cej.2024.156028.

    Article 

    Google Scholar 

  • Cheng J, Li L, Jin D, Zhang Y, Yu W, Yu J, et al. A non-metal single atom nanozyme for cutting off the energy and reducing power of tumors. Angew Chem Int Ed. 2024;63:e202319982. https://doi.org/10.1002/anie.202319982.

    Article 

    Google Scholar 

  • Zhao Y, Xu J, Zhang Y, Wu F, Zhao W, Li R, et al. Biomimetic redox-responsive prodrug micelles with diselenide linkage for platinum nanozymes augmented sonodynamic/chemo combined therapy of colon cancer. Chem Eng J. 2023;472:144911. https://doi.org/10.1016/j.cej.2023.144911.

    Article 

    Google Scholar 

  • Huang X, Liu X, Luo Q, Liu J, Shen J. Artificial selenoenzymes: designed and redesigned. Chem Soc Rev. 2011;40:1171–84. https://doi.org/10.1039/c0cs00046a.

    Article 
    PubMed 

    Google Scholar 

  • Stolwijk JM, Falls-Hubert KC, Searby CC, Wagner BA, Buettner GR. Simultaneous detection of the enzyme activities of GPx1 and GPx4 guide optimization of selenium in cell biological experiments. Redox Biol. 2020;32:101518. https://doi.org/10.1016/j.redox.2020.101518.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar A, Dutt R, Srivastava A, Kayastha AM. Immobilization of α-amylase onto functionalized molybdenum diselenide nanoflowers (MoSe2-NFs) as scaffolds: characterization, kinetics, and potential applications in starch-based industries. Food Chem. 2024;442:138431. https://doi.org/10.1016/j.foodchem.2024.138431.

    Article 
    PubMed 

    Google Scholar 

  • Li N, Liu M, Ma Y, Chang Q, Wang H, Li Y, Zhang H, Liu B, Xue C, Hu S. Molybdenum selenide/porous carbon nanomaterial heterostructures with remarkably enhanced light-boosting peroxidase-like activities. ACS Appl Mater Interfaces. 2021;13:54274–83. https://doi.org/10.1021/acsami.1c16569.

    Article 
    PubMed 

    Google Scholar 

  • Lee J, Liao H, Wang Q, Han J, Han J-H, Shin HE, Ge M, Park W, Li F. Exploration of nanozymes in viral diagnosis and therapy. Exploration. 2022;2:20210086. https://doi.org/10.1002/exp.20210086.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang X, Liu T, Li L, Li J, Li S, Zeng K, et al. Translational selenium nanotherapeutics counter-acts multiple risk factors to improve surgery-induced cognitive impairment. Chem Eng J. 2022;441:135984. https://doi.org/10.1016/j.cej.2022.135984.

    Article 

    Google Scholar 

  • Shahraki S, Vaziri E, Saboury AA, Fan K. Biomedical potential of nanozymes: harnessing redox enzyme mimicry for theranostic applications. Coord Chem Rev. 2024;517:215937. https://doi.org/10.1016/j.ccr.2024.215937.

    Article 

    Google Scholar 

  • Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B. 2021;9:6770–801. https://doi.org/10.1039/d1tb01253c.

    Article 
    PubMed 

    Google Scholar 

  • Huang Y, Su E, Ren J, Qu X. The recent biological applications of selenium-based nanomaterials. Nano Today. 2021;38:101205. https://doi.org/10.1016/j.nantod.2021.101205.

    Article 

    Google Scholar 

  • Song X, Chen Y, Zhao G, Sun H, Che H, Leng X. Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan-selenium nanoparticles. Carbohydr Polym. 2020;231:115689. https://doi.org/10.1016/j.carbpol.2019.115689.

    Article 
    PubMed 

    Google Scholar 

  • Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnol. 2017;15:4. https://doi.org/10.1186/s12951-016-0243-4.

    Article 

    Google Scholar 

  • Bai K, Hong B, Hong Z, Sun J, Wang C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in d-galactose-induced aging mice. J Nanobiotechnol. 2017;15:92. https://doi.org/10.1186/s12951-017-0324-z.

    Article 

    Google Scholar 

  • Hamed AA, Hawwa MT, Baraka DM, El-Shora HM, El-Sayyad GS, Al-Hazmi NE, et al. Understanding antimicrobial activity of biogenic selenium nanoparticles and selenium/chitosan nano-incorporates via studying their inhibition activity against key metabolic enzymes. Int J Biol Macromol. 2025;298:140073. https://doi.org/10.1016/j.ijbiomac.2025.140073.

    Article 
    PubMed 

    Google Scholar 

  • Sun R, Li S, Chen Z, Zheng K, Li W, Sun X, Yue W. Oral antioxidant-engineered probiotics for the treatment of radiation-induced colitis. ACS Appl Mater Interfaces. 2025;17:10316–27. https://doi.org/10.1021/acsami.4c17651.

    Article 
    PubMed 

    Google Scholar 

  • Tan L, Jia X, Jiang X, Zhang Y, Tang H, Yao S, et al. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron. 2009;24:2268–72. https://doi.org/10.1016/j.bios.2008.10.030.

    Article 
    PubMed 

    Google Scholar 

  • Su X, Liu W, Yang B, Yang S, Hou J, Yu G, et al. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol. 2024;267:131588. https://doi.org/10.1016/j.ijbiomac.2024.131588.

    Article 
    PubMed 

    Google Scholar 

  • Naveenkumar S, Venkateshan N, Kaviyarasu K, Christyraj JRSS, Muthukumaran A. Optimum performance of a novel biocompatible scaffold comprising alginate-pectin-selenium nanoparticles for cardiac tissue engineering using C2C12 cells. J Mol Struct. 2023;1294:136457. https://doi.org/10.1016/j.molstruc.2023.136457.

    Article 

    Google Scholar 

  • Li X-N, Lin L, Li X-W, Zhu Q, Xie Z-Y, Hu Y-Z, et al. BSA-stabilized selenium nanoparticles ameliorate intracerebral hemorrhage’s-like pathology by inhibiting ferroptosis-mediated neurotoxicology via Nrf2/GPX4 axis activation. Redox Biol. 2024;75:103268. https://doi.org/10.1016/j.redox.2024.103268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu K, Huang P, Wu Y, Liu T, Shao N, Zhao L, et al. Engineered selenium/human serum albumin nanoparticles for efficient targeted treatment of Parkinson’s disease via oral gavage. ACS Nano. 2023;17:19961–80. https://doi.org/10.1021/acsnano.3c05011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang S, Chen Y, Han S, Liu Y, Gao J, Huang Y, Sun W, Wang J, Wang C, Zhao J. Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway. Theranostics. 2022;12:3882–95. https://doi.org/10.7150/thno.70830.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D’Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, et al. Selenium nanoparticles synergize with a Kras nanovaccine against breast cancer. Adv Healthc Mater. 2025;14:2401523. https://doi.org/10.1002/adhm.202401523.

    Article 
    PubMed 

    Google Scholar 

  • Ruiz-Fresneda MA, Schaefer S, Hübner R, Fahmy K, Merroun ML. Exploring antibacterial activity and bacterial-mediated allotropic transition of differentially coated selenium nanoparticles. ACS Appl Mater Interfaces. 2023;15:29958–70. https://doi.org/10.1021/acsami.3c05100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bu Q, Jiang D, Yu Y, Deng Y, Chen T, Xu L. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus infection. Drug Resist Updat. 2024;76:101102. https://doi.org/10.1016/j.drup.2024.101102.

    Article 
    PubMed 

    Google Scholar 

  • Tarrahi R, Khataee A, Movafeghi A, Rezanejad F, Gohari G. Toxicological implications of selenium nanoparticles with different coatings along with Se4 + on Lemna minor. Chemosphere. 2017;181:655–65. https://doi.org/10.1016/j.chemosphere.2017.04.142.

    Article 
    PubMed 

    Google Scholar 

  • Zhang C, Zhai X, Zhao G, Ren F, Leng X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr Polym. 2015;134:158–66. https://doi.org/10.1016/j.carbpol.2015.07.065.

    Article 
    PubMed 

    Google Scholar 

  • Krishnaraj C, Radhakrishnan S, Ramachandran R, Ramesh T, Kim B-S, Yun S-I. In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites. Chemosphere. 2022;301:134790. https://doi.org/10.1016/j.chemosphere.2022.134790.

    Article 
    PubMed 

    Google Scholar 

  • Chen W, Li Y, Yang S, Yue L, Jiang Q, Xia W. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydr Polym. 2015;132:574–81. https://doi.org/10.1016/j.carbpol.2015.06.064.

    Article 
    PubMed 

    Google Scholar 

  • Luo Y, Zhang B, Cheng W-H, Wang Q. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydr Polym. 2010;82:942–51. https://doi.org/10.1016/j.carbpol.2010.06.029.

    Article 

    Google Scholar 

  • Wu Y, Xu W, Jiao L, Tang Y, Chen Y, Gu W, Zhu C. Defect engineering in nanozymes. Mater Today. 2022;52:327–47. https://doi.org/10.1016/j.mattod.2021.10.032.

    Article 

    Google Scholar 

  • Wang R, Zhang T, Zhang W, Chen B, Liu J, Liu G, et al. Microperoxidase-11 functionalized nanozyme with enhanced peroxidase-mimicking activities for visual detection of cysteine. Anal Chim Acta. 2023;1267:341386. https://doi.org/10.1016/j.aca.2023.341386.

    Article 
    PubMed 

    Google Scholar 

  • Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJH, et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano. 2013;7:3253–63. https://doi.org/10.1021/nn3059295.

  • Khan MD, Malik MA, Revaprasadu N. Progress in selenium based metal-organic precursors for main group and transition metal selenide thin films and nanomaterials. Coord Chem Rev. 2019;388:24–47. https://doi.org/10.1016/j.ccr.2019.02.026.

    Article 

    Google Scholar 

  • Qian F, Peng L, Cao D, Jiang W, Hu C, Huang J, et al. Asymmetric active sites originate from high-entropy metal selenides by joule heating to boost electrocatalytic water oxidation. Joule. 2024;8:2342–56. https://doi.org/10.1016/j.joule.2024.06.004.

    Article 

    Google Scholar 

  • Li Y, Yu J, Zhang W, Shan J, Chen H, Ma Y, et al. Copper selenide nanosheets with photothermal therapy-related properties and multienzyme activity for highly effective eradication of drug resistance. J Colloid Interface Sci. 2024;666:434–46. https://doi.org/10.1016/j.jcis.2024.03.176.

    Article 
    PubMed 

    Google Scholar 

  • Chalana A, Karri R, Das R, Kumar B, Rai RK, Saxena H, et al. Copper-driven deselenization: a strategy for selective conversion of copper ion to nanozyme and its implication for copper-related disorders. ACS Appl Mater Interfaces. 2019;11:4766–76. https://doi.org/10.1021/acsami.8b16786.

    Article 
    PubMed 

    Google Scholar 

  • Feng Y, Liu Z, Feng Y, Wang J, Chen J, Dong Z, et al. A pH-responsive copper selenide nanozyme modulates multiple enzyme activities for improved healing of infected wounds. Appl Mater Today. 2024;41:102518. https://doi.org/10.1016/j.apmt.2024.102518.

    Article 

    Google Scholar 

  • Tian R, Ma H, Ye W, Li Y, Wang S, Zhang Z, et al. Se-containing Mof coated dual-fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv Funct Mater. 2022;32:2204025. https://doi.org/10.1002/adfm.202204025.

    Article 

    Google Scholar 

  • Zhu D, Wu H, Jiang K, Xu Y, Miao Z, Wang H, et al. Zero-valence selenium-enriched Prussian blue nanozymes reconstruct intestinal barrier against inflammatory bowel disease via inhibiting ferroptosis and T cells differentiation. Adv Healthc Mater. 2023;12:2203160. https://doi.org/10.1002/adhm.202203160.

    Article 

    Google Scholar 

  • Li Y, Cao Y, Ma K, Ma R, Zhang M, Guo Y, et al. A triple-responsive polymeric prodrug nanoplatform with extracellular ROS consumption and intracellular H2O2 self-generation for imaging-guided tumor chemo-ferroptosis-immunotherapy. Adv Healthc Mater. 2024;13:2303568. https://doi.org/10.1002/adhm.202303568.

    Article 

    Google Scholar 

  • Chen L, Ding C, Chai K, Yang B, Chen W, Zeng J, et al. Nanohole-array induced metallic molybdenum selenide nanozyme for photoenhanced tumor-specific therapy. ACS Nano. 2023;17:18148–63. https://doi.org/10.1021/acsnano.3c05000.

    Article 
    PubMed 

    Google Scholar 

  • Meng R-Y, Zhao Y, Xia H-Y, Wang S-B, Chen A-Z, Kankala RK. 2D architectures-transformed conformational nanoarchitectonics for light-augmented nanocatalytic chemodynamic and photothermal/photodynamic-based trimodal therapies. ACS Mater Lett. 2024;6:1160–77. https://doi.org/10.1021/acsmaterialslett.3c01615.

    Article 

    Google Scholar 

  • Zhang J, Ye W, Wan L, Shi N, Peng C, Shi Y, et al. Beating xenograft liposarcoma using metal selenides with NIR-III photothermal ablation and bioactive selenium derivates. Chem Eng J. 2024;481:148521. https://doi.org/10.1016/j.cej.2024.148521.

    Article 

    Google Scholar 

  • Xiao J, Zhang G, Xu R, Chen H, Wang H, Tian G, Wang B, Yang C, Bai G, Zhang Z, et al. A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials. 2019;216:119254. https://doi.org/10.1016/j.biomaterials.2019.119254.

    Article 
    PubMed 

    Google Scholar 

  • Pei M, Liu K, Qu X, Wang K, Chen Q, Zhang Y, Wang X, Wang Z, Li X, Chen F, et al. Enzyme-catalyzed synthesis of selenium-doped manganese phosphate for synergistic therapy of drug-resistant colorectal cancer. J Nanobiotechnol. 2023;21:72. https://doi.org/10.1186/s12951-023-01819-0.

    Article 

    Google Scholar 

  • Han Y, Yi H, Wang Y, Li Z, Chu X, Jiang J-H. Ultrathin zinc selenide nanoplatelets boosting photoacoustic imaging of in situ copper exchange in Alzheimer’s disease mice. ACS Nano. 2022;16:19053–66. https://doi.org/10.1021/acsnano.2c08094.

    Article 
    PubMed 

    Google Scholar 

  • Gao M, Wang Z, Zheng H, Wang L, Xu S, Liu X, et al. Two-dimensional Tin Selenide (snse) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew Chem Int Ed. 2020;59:3618–23. https://doi.org/10.1002/anie.201913035.

    Article 

    Google Scholar 

  • Wu D, Li J, Xu S, Xie Q, Pan Y, Liu X, et al. Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells. J Am Chem Soc. 2020;142:19602–10. https://doi.org/10.1021/jacs.0c08360.

    Article 
    PubMed 

    Google Scholar 

  • Wu G, Wei P, Chen X, Zhang Z, Jin Z, Liu J, et al. Less is more: biological effects of NiSe2/rGO nanocomposites with low dose provide new insight for risk assessment. J Hazard Mater. 2021;415:125605. https://doi.org/10.1016/j.jhazmat.2021.125605.

    Article 
    PubMed 

    Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8. https://doi.org/10.1021/nl0347334.

    Article 
    PubMed 

    Google Scholar 

  • Shi Y, Li Y, Huang C, Xu Y, Xu Y. Electrogenerated copper selenide with positive charge to efficiently capture and combat drug-resistant bacteria for wound healing. J Colloid Interface Sci. 2023;634:852–63. https://doi.org/10.1016/j.jcis.2022.12.094.

    Article 
    PubMed 

    Google Scholar 

  • Sun H, Miao L, Li J, Fu S, An G, Si C, Dong Z, Luo Q, Yu S, Xu J, Liu J. Self-assembly of cricoid proteins induced by soft nanoparticles: an approach to design multienzyme-cooperative antioxidative systems. ACS Nano. 2015;9:5461–9. https://doi.org/10.1021/acsnano.5b01311.

    Article 
    PubMed 

    Google Scholar 

  • Xia D, Yu H, Li H, Huang P, Li Q, Wang Y. Carbon-based and carbon-supported nanomaterials for the catalytic conversion of biomass: a review. Environ Chem Lett. 2022;20:1719–44. https://doi.org/10.1007/s10311-022-01402-3.

    Article 

    Google Scholar 

  • Sun B, Luo C, Zhang X, Guo M, Sun M, Yu H, Chen Q, Yang W, Wang M, Zuo S, et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun. 2019;10:3211. https://doi.org/10.1038/s41467-019-11193-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao X, Shao Z, Yu L. A perspective of the engineering applications of carbon-based selenium-containing materials. Chin Chem Lett. 2021;32:2933–8. https://doi.org/10.1016/j.cclet.2021.03.047.

    Article 

    Google Scholar 

  • Gao F, Liu J, Gong P, Yang Y, Jiang Y. Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chem Eng J. 2023;462:142338. https://doi.org/10.1016/j.cej.2023.142338.

    Article 

    Google Scholar 

  • Huang H, Shen Z, Chen B, Wang X, Xia Q, Ge Z, Wang Y, Li X. Selenium-doped two-photon fluorescent carbon nanodots for in-situ free radical scavenging in mitochondria. J Colloid Interface Sci. 2020;567:402–9. https://doi.org/10.1016/j.jcis.2020.02.011.

    Article 
    PubMed 

    Google Scholar 

  • Li F, Li T, Sun C, Xia J, Jiao Y, Xu H. Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem. 2017. https://doi.org/10.1002/ange.201705989.

    Article 

    Google Scholar 

  • Nam NTH, Truong DP, An TTV, Huong QTT, Tuyen NNK, An H, et al. Biological activity prospects of selenium-decorated graphene oxide composite by green synthesis using Sesbania sesban flower extract. Diamond Relat Mater. 2024;141:110563. https://doi.org/10.1016/j.diamond.2023.110563.

    Article 

    Google Scholar 

  • Xia J, Li F, Ji S, Xu H. Selenium-functionalized graphene oxide that can modulate the balance of reactive oxygen species. ACS Appl Mater Interfaces. 2017;9:21413–21. https://doi.org/10.1021/acsami.7b05951.

    Article 
    PubMed 

    Google Scholar 

  • Sun J, Yan M, Tao G, Su R, Xiao X, Wu Q, et al. A single-atom manganese nanozyme mediated membrane reactor for water decontamination. Water Res. 2025;268:122627. https://doi.org/10.1016/j.watres.2024.122627.

    Article 
    PubMed 

    Google Scholar 

  • Lu Y, Zhang X, Huang Y. Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chin Chem Lett. 2025;36:110129. https://doi.org/10.1016/j.cclet.2024.110129.

    Article 

    Google Scholar 

  • Jiang Z, Li H, Ai R, Deng Y, He Y. Electrostatic-driven coordination interaction enables high specificity of UO22 + peroxidase mimic for visual colorimetric detection of UO22+. ACS Sustain Chem Eng. 2020;8:11630–7. https://doi.org/10.1021/acssuschemeng.0c02995.

    Article 

    Google Scholar 

  • Wang Z, Li G, Gao Y, Yu Y, Yang P, Li B, et al. Trienzyme-like iron phosphates-based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects. Chem Eng J. 2021;404:125574. https://doi.org/10.1016/j.cej.2020.125574.

    Article 

    Google Scholar 

  • Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of glucose based on noble metal nanozymes: mechanism, activity regulation, and enantioselective recognition. Small. 2023;19:2205924. https://doi.org/10.1002/smll.202205924.

    Article 

    Google Scholar 

  • Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, et al. Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew Chem Int Ed. 2018;57(20):5725–30. https://doi.org/10.1002/anie.201801378.

    Article 

    Google Scholar 

  • Sun H, Zhou Y, Ren J, Qu X. Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Ed. 2018;57:9224–37. https://doi.org/10.1002/anie.201712469.

    Article 

    Google Scholar 

  • Kang L, Wu Y, Jia Y, Chen Z, Kang D, Zhang L, et al. Nano-selenium enhances melon resistance to podosphaera xanthii by enhancing the antioxidant capacity and promoting alterations in the polyamine, phenylpropanoid and hormone signaling pathways. J Nanobiotechnol. 2023;21:377. https://doi.org/10.1186/s12951-023-02148-y.

    Article 

    Google Scholar 

  • Li R, Kong W, An Z. Enzyme catalysis for reversible deactivation radical polymerization. Angew Chem Int Ed. 2022;61:e202202033. https://doi.org/10.1002/anie.202202033.

    Article 

    Google Scholar 

  • Huanhuan N, Xiaoxiao L, Guojuan Y, Chengzhi H, Hongyan Z. Colorimetric evaluation of total antioxidant capacity based on peroxidase-like nonstoichiometric Cu2-xSe nanoparticles. Sens Actuators B. 2023. https://doi.org/10.1016/j.snb.2023.134794.

    Article 

    Google Scholar 

  • Tarrahi R, Movafeghi A, Khataee A, Rezanejad F, Gohari G. Evaluating the toxic impacts of cadmium selenide nanoparticles on the aquatic plant lemna minor. Molecules. 2019;24:410. https://doi.org/10.3390/molecules24030410.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen C, Wang Y, Zhang D. Oxygen vacancy tuned oxidase mimic through selenium-doping ultrathin 2D Ni-V mixed metal oxide and antibacterial application. J Alloys Compd. 2022;915:165446. https://doi.org/10.1016/j.jallcom.2022.165446.

    Article 

    Google Scholar 

  • Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172:409–e422421. https://doi.org/10.1016/j.cell.2017.11.048.

    Article 
    PubMed 

    Google Scholar 

  • Zhang D, Shen N, Zhang J, Zhu J, Guo Y, Xu L. A novel nanozyme based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase activity. RSC Adv. 2020;10:8685–91. https://doi.org/10.1039/c9ra10262k.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang W, Zheng J, Zhou H, Liu Q, Jia L, Zhang X, et al. Polydopamine-based nanocomposite as a biomimetic antioxidant with a variety of enzymatic activities for Parkinson’s disease. ACS Appl Mater Interfaces. 2022;14:32901–13. https://doi.org/10.1021/acsami.2c06981.

    Article 
    PubMed 

    Google Scholar 

  • Ringuet MT, Hunne B, Lenz M, Bravo DM, Furness JB. Analysis of bioavailability and induction of glutathione peroxidase by dietary nanoelemental, organic and inorganic selenium. Nutrients. 2021;13:1073. https://doi.org/10.3390/nu13041073.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhai Q, Cen S, Li P, Tian F, Zhao J, Zhang H, Chen W. Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota. Environ Sci Technol Lett. 2018;5:724–30. https://doi.org/10.1021/acs.estlett.8b00563.

    Article 

    Google Scholar 

  • Zhang Z, Yan A, Xu Z, Tian R, Hou C, Luo Q, et al. Engineering biomimetic ATP-responsive Se-containing core-shell cascade nanozyme for efficient tumor combination therapy. Chem Eng J. 2023;454:140165. https://doi.org/10.1016/j.cej.2022.140165.

    Article 

    Google Scholar 

  • Xu K, Huang P, Peng Y, Qu S. Reply to comment on ‘engineered selenium/human serum albumin nanoparticles for efficient targeted treatment of parkinson’s disease via oral gavage. ACS Nano. 2024;18:11489–91. https://doi.org/10.1021/acsnano.4c04245.

    Article 
    PubMed 

    Google Scholar 

  • Yang H, Wang Z, Li L, Wang X, Wei X, Gou S, Ding Z, Cai Z, Ling Q, Hoffmann PR, et al. Mannose coated selenium nanoparticles normalize intestinal homeostasis in mice and mitigate colitis by inhibiting NF-κB activation and enhancing glutathione peroxidase expression. J Nanobiotechnol. 2024;22:613. https://doi.org/10.1186/s12951-024-02861-2.

    Article 

    Google Scholar 

  • Zhou C, Zhao Y, Yang M, Yin W, Li Y, Xiao Y, et al. Diselenide-containing polymer based on new antitumor mechanism as efficient Gsh depletion agent for ferroptosis therapy. Adv Healthc Mater. 2024;13:2303896. https://doi.org/10.1002/adhm.202303896.

    Article 

    Google Scholar 

  • Lai H, Zhang X, Song Z, Yuan Z, He L, Chen T. Facile synthesis of antioxidative nanotherapeutics using a microwave for efficient reversal of cisplatin-induced nephrotoxicity. Chem Eng J. 2020;391:123563. https://doi.org/10.1016/j.cej.2019.123563.

    Article 

    Google Scholar 

  • Singh N, NaveenKumar SK, Geethika M, Mugesh G. A cerium vanadate nanozyme with specific superoxide dismutase activity regulates mitochondrial function and ATP synthesis in neuronal cells. Angew Chem Int Ed. 2021;60:3121–30. https://doi.org/10.1002/anie.202011711.

    Article 

    Google Scholar 

  • Deng Z, Ma W, Ding C, Wei C, Gao B, Zhu Y, Zhang Y, Wu F, Zhang M, Li R, Zhang M. Metal polyphenol network/cerium oxide artificial enzymes therapeutic nanoplatform for MRI/CT-aided intestinal inflammation management. Nano Today. 2023;53:102044. https://doi.org/10.1016/j.nantod.2023.102044.

    Article 

    Google Scholar 

  • Gong Y, Huang J, Xing X, Liu H, Zhou Z, Dong H. Red emissive carbon dots self-cascading antioxidant nanozymes combine with anti-miRNA-155 for accurate monitoring and ameliorating rheumatoid arthritis. Chem Eng J. 2024;481:148523. https://doi.org/10.1016/j.cej.2024.148523.

    Article 

    Google Scholar 

  • Shang L, Yu Y, Jiang Y, Liu X, Sui N, Yang D, Zhu Z. Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano. 2023;17:15962–77. https://doi.org/10.1021/acsnano.3c04134.

    Article 
    PubMed 

    Google Scholar 

  • Liu K, Niu J, Liu L, Tian F, Nie H, Liu X, et al. LUMO-mediated se and HOMO-mediated te nanozymes for selective redox biocatalysis. Nano Lett. 2023;23:5131–40. https://doi.org/10.1021/acs.nanolett.3c01068.

    Article 
    PubMed 

    Google Scholar 

  • Dong K, Xu C, Ren J, Qu X. Chiral nanozymes for enantioselective biological catalysis. Angew Chem Int Ed. 2022;61:e202208757. https://doi.org/10.1002/anie.202208757.

    Article 

    Google Scholar 

  • Zhang X, An Z, An J, Tian X. Bioinspired chiral nanozymes: synthesis strategies, classification, biological effects and biomedical applications. Coord Chem Rev. 2024;502:215601. https://doi.org/10.1016/j.ccr.2023.215601.

    Article 

    Google Scholar 

  • Liu X, Zhang H, Hao C, Kuang H, Xu C, Xu L. Chiral Se@CeO2 superparticles for ameliorating parkinson’s disease. Nanoscale. 2023;15:4367–77. https://doi.org/10.1039/d2nr04534f.

    Article 
    PubMed 

    Google Scholar 

  • Wang W, Zhang Z, Liu Y, Kong L, Li W, Hu W, et al. Nano-integrated cascade antioxidases opsonized by albumin bypass the blood–brain barrier for treatment of ischemia-reperfusion injury. Biomater Sci. 2022;10:7103–16. https://doi.org/10.1039/d2bm01401g.

    Article 
    PubMed 

    Google Scholar 

  • Zhao S, Li Y, Liu Q, Li S, Cheng Y, Cheng C, et al. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 2020;30:2004692. https://doi.org/10.1002/adfm.202004692.

    Article 

    Google Scholar 

  • Zhang W, Hu S, Yin J-J, He W, Lu W, Ma M, Gu N, Zhang Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138:5860–5. https://doi.org/10.1021/jacs.5b12070.

    Article 
    PubMed 

    Google Scholar 

  • Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a parkinson’s disease model. Angew Chem Int Ed. 2017;56:14267–71. https://doi.org/10.1002/anie.201708573.

    Article 

    Google Scholar 

  • Yan X, Meng L, Zhang X, Deng Z, Gao B, Zhang Y, et al. Reactive oxygen species-responsive nanocarrier ameliorates murine colitis by intervening colonic innate and adaptive immune responses. Mol Ther. 2023;31:1383–401. https://doi.org/10.1016/j.ymthe.2023.02.017.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Somerville SV, Li Q, Wordsworth J, Jamali S, Eskandarian MR, Tilley RD, et al. Approaches to improving the selectivity of nanozymes. Adv Mater. 2023;2211288. https://doi.org/10.1002/adma.202211288.

    Article 

    Google Scholar 

  • Li L, Lu Y, Xu X, Yang X, Chen L, Jiang C, et al. Catalytic-enhanced lactoferrin-functionalized Au-Bi2Se3 nanodots for parkinson’s disease therapy via reactive oxygen attenuation and mitochondrial protection. Adv Healthc Mater. 2021;10:2100316. https://doi.org/10.1002/adhm.202100316.

    Article 

    Google Scholar 

  • Xiong Z, He L, Pi F, Yu Y, Xiao Z, Chen T. Intracellular redox environment determines cancer-normal cell selectivity of selenium nanoclusters. Angew Chem Int Ed. 2025;64:e202416006. https://doi.org/10.1002/anie.202416006.

    Article 

    Google Scholar 

  • Duo Y, Luo G, Li Z, Chen Z, Li X, Jiang Z, et al. Photothermal and enhanced photocatalytic therapies conduce to synergistic anticancer phototherapy with biodegradable titanium diselenide nanosheets. Small. 2021;17:2103239. https://doi.org/10.1002/smll.202103239.

    Article 

    Google Scholar 

  • You Y, Chang Y, Pan S, Bu Q, Ling J, He W, et al. Cleavage of homonuclear chalcogen-chalcogen bonds in a hybrid platform in response to x-ray radiation potentiates tumor radiochemotherapy. Angew Chem Int Ed. 2025;64:e202412922. https://doi.org/10.1002/anie.202412922.

    Article 

    Google Scholar 

  • Peng S-Y, Liu X-H, Chen Q-W, Yu Y-J, Liu M-D, Zhang X-Z. Harnessing in situ glutathione for effective ROS generation and tumor suppression via nanohybrid-mediated catabolism dynamic therapy. Biomaterials. 2022;281:121358. https://doi.org/10.1016/j.biomaterials.2021.121358.

    Article 
    PubMed 

    Google Scholar 

  • Sun C, Zhang X, Huang H, Liu Y, Mo X, Feng Y, et al. Selective oxidation of p-phenylenediamine for blood glucose detection enabled by Se-vacancy-rich TiSe2-x@Au nanozyme. Biosens Bioelectron. 2023;241:115665. https://doi.org/10.1016/j.bios.2023.115665.

    Article 
    PubMed 

    Google Scholar 

  • Jin K, Shi S, Huang D, Huang H, Zou B, Huang W, et al. Maintaining cardiac homeostasis by translational selenium nanoparticles with rapid selenoproteins regulation to achieve radiation-induced heart prevention. Chem Eng J. 2025;506:160005. https://doi.org/10.1016/j.cej.2025.160005.

    Article 

    Google Scholar 

  • Xu K, Zhu Y, Qian J, He Y, Liu Y, Lu B, et al. Trigger selenium sites and stable multiphasic-engineered modulated BiFeO3/MoSe2-1T/2H photocatalyst for hydrogen peroxide production. Appl Catal B. 2024;343:123571. https://doi.org/10.1016/j.apcatb.2023.123571.

    Article 

    Google Scholar 

  • Wang J, Liu X, Liao T, Ma C, Chen B, Li Y, et al. Fe doping induced selenium vacancy on Cobalt Selenide for enhanced hydrogen peroxides production. Appl Catal B. 2024;341:123344. https://doi.org/10.1016/j.apcatb.2023.123344.

    Article 

    Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90. https://doi.org/10.1126/science.179.4073.588.

    Article 
    PubMed 

    Google Scholar 

  • Zade SS, Singh HB, Butcher RJ. The isolation and crystal structure of a cyclic selenenate ester derived from bis(2,6-diformyl-4-tert-butylphenyl)diselenide and its glutathione peroxidase-like activity. Angew Chem Int Ed. 2004;43:4513–5. https://doi.org/10.1002/anie.200460380.

    Article 

    Google Scholar 

  • Ungati H, Govindaraj V, Narayanan M, Mugesh G. Probing the formation of a seleninic acid in living cells by the fluorescence switching of a glutathione peroxidase mimetic. Angew Chem Int Ed. 2019;58:8156–60. https://doi.org/10.1002/anie.201903958.

    Article 

    Google Scholar 

  • Zhao R, Zhu Y, Zhou J, Liu B, Du Y, Gai S, et al. Dual glutathione depletion enhanced enzyme catalytic activity for hyperthermia assisted tumor therapy on semi-metallic VSe2/Mn-CS. ACS Nano. 2022;16:10904–17. https://doi.org/10.1021/acsnano.2c03222.

    Article 
    PubMed 

    Google Scholar 

  • Nathan C. Resisting antimicrobial resistance. Nat Rev Microbiol. 2020;18:259–60. https://doi.org/10.1038/s41579-020-0348-5.

    Article 
    PubMed 

    Google Scholar 

  • Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. An overview of the use of nanozymes in antibacterial applications. Chem Eng J. 2021;418:129431. https://doi.org/10.1016/j.cej.2021.129431.

    Article 

    Google Scholar 

  • Hou J, Fu R, Yu T, Ge P, Wang Y, Zhao M, Zou A, Xianyu Y. Synergistic antibacterial therapy for multidrug-resistant bacterial infections using multifunctional nanozymes. Nano Today. 2024;54:102118. https://doi.org/10.1016/j.nantod.2023.102118.

    Article 

    Google Scholar 

  • Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, et al. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing. Adv Healthc Mater. 2021;10:2100402. https://doi.org/10.1002/adhm.202100402.

    Article 

    Google Scholar 

  • He D, Liu X, Jia J, Peng B, Xu N, Zhang Q, et al. Magnetic field-directed deep thermal therapy via double-layered microneedle patch for promoting tissue regeneration in infected diabetic skin wounds. Adv Funct Mater. 2024;34:2306357. https://doi.org/10.1002/adfm.202306357.

    Article 

    Google Scholar 

  • Lian Y, Wang Y, Zhang D, Xu L. Peroxidase-like and oxidase-like nanozyme activities of reusable Mn-Co-S-Se/Ni foam for antibacterial application. Colloids Surf A Physicochem Eng Asp. 2021;626:127010. https://doi.org/10.1016/j.colsurfa.2021.127010.

    Article 

    Google Scholar 

  • Mu X-P, Li T, Guo F-F, Xu Z-H, Sun P, Zhang X, et al. Se nanoparticles-loaded and Mo-doped iron phthalocyanine nanorods as photoresponsive nanozyme for efficient synergistic sterilization. Mater Lett. 2023;346:134565. https://doi.org/10.1016/j.matlet.2023.134565.

    Article 

    Google Scholar 

  • Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, et al. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater. 2022;7:557–74. https://doi.org/10.1038/s41578-022-00426-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parthasarathi S, Muthukumar SP, Anandharamakrishnan C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016;7:2294–302. https://doi.org/10.1039/c5fo01517k.

    Article 
    PubMed 

    Google Scholar 

  • LaForge JM, Urso K, Day JM, Bourgeois CW, Ross MM, Ahmadzadeh S, et al. Non-steroidal anti-inflammatory drugs: clinical implications, renal impairment risks, and AKI. Adv Ther. 2023;40:2082–96. https://doi.org/10.1007/s12325-023-02481-6.

    Article 
    PubMed 

    Google Scholar 

  • Woodle ES, Gill JS, Clark S, Stewart D, Alloway R, First R. Early corticosteroid cessation vs long-term corticosteroid therapy in kidney transplant recipients: long-term outcomes of a randomized clinical trial. JAMA Surg. 2021;156:307–14. https://doi.org/10.1001/jamasurg.2020.6929.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang Y, Liu Z, Liu C, Zhang Y, Ren J, Qu X. Selenium-based nanozyme as biomimetic antioxidant machinery. Chem-Eur J. 2018;24:10224–30. https://doi.org/10.1002/chem.201801725.

    Article 
    PubMed 

    Google Scholar 

  • Chen X, Zhu X, Gong Y, Yuan G, Cen J, Lie Q, et al. Porous selenium nanozymes targeted scavenging ROS synchronize therapy local inflammation and sepsis injury. Appl Mater Today. 2021;22:100929. https://doi.org/10.1016/j.apmt.2020.100929.

    Article 

    Google Scholar 

  • Chen X, Yang Y, Mai Q, Ye G, Liu Y, Liu J. Pillar arene se nanozyme therapeutic systems with dual drive power effectively penetrated mucus layer combined therapy acute lung injury. Biomaterials. 2024;304:122384. https://doi.org/10.1016/j.biomaterials.2023.122384.

    Article 
    PubMed 

    Google Scholar 

  • Ai Y, You J, Gao J, Wang J, Sun H-b, Ding M, Liang Q. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res. 2021;14:2644–53. https://doi.org/10.1007/s12274-020-3267-x.

    Article 

    Google Scholar 

  • Huang X, Zhou Y, Guo Y, Yan D, Sun P, Cao Y, Chen Y, Peng J. Selenium-doped copper formate nanozymes with antisenescence and oxidative stress reduction for atherosclerosis treatment. Nano Lett. 2025;25:2662–9. https://doi.org/10.1021/acs.nanolett.4c05348.

    Article 
    PubMed 

    Google Scholar 

  • Deng Y, Gao Y, Li T, Xiao S, Adeli M, Rodriguez RD, Geng W, Chen Q, Cheng C, Zhao C. Amorphizing metal selenides-based ROS biocatalysts at surface nanolayer toward ultrafast inflammatory diabetic wound healing. ACS Nano. 2023;17:2943–57. https://doi.org/10.1021/acsnano.2c11448.

    Article 
    PubMed 

    Google Scholar 

  • Fu Y, Wang T, Ge X, Wen H, Fei Y, Li M, et al. Orally-deliverable liposome-microgel complexes dynamically remodel intestinal environment to enhance probiotic ulcerative colitis therapy via TLR4 inhibition and tryptophan metabolic crosstalk. Biomaterials. 2025;321:123339. https://doi.org/10.1016/j.biomaterials.2025.123339.

    Article 
    PubMed 

    Google Scholar 

  • Bian D-D, Liu X, Jiang J-J, Sun X-L, Shi Y-X, Zhu X-R, et al. An insight into nitrite-induced reproductive toxicity and the alleviation of injury by selenomethionine through activation of the Keap1/Nrf2 pathway in Procambarus clarkii. Int J Biol Macromol. 2025;306:141616. https://doi.org/10.1016/j.ijbiomac.2025.141616.

    Article 
    PubMed 

    Google Scholar 

  • Qi X, Tong L, Lian H, Chen Z, Yang L, Wu Y, et al. Selenium nanoparticles modified with Ophiocordyceps gracilis polysaccharides: enhancing stability, bioavailability, and anti-inflammatory efficacy. Food Res Int. 2025;201:115652. https://doi.org/10.1016/j.foodres.2024.115652.

    Article 
    PubMed 

    Google Scholar 

  • Huang L, Zhang S, Bian M, Xiang X, Xiao L, Wang J, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater. 2024;180:82–103. https://doi.org/10.1016/j.actbio.2024.04.016.

    Article 
    PubMed 

    Google Scholar 

  • Zheng G, Xu X, Zheng J, Liu A. Protective effect of seleno-β-lactoglobulin (Se-β-lg) against oxidative stress in D-galactose-induced aging mice. J Funct Foods. 2016;27:310–8. https://doi.org/10.1016/j.jff.2016.09.015.

    Article 

    Google Scholar 

  • Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X. A GO–Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun. 2017;53:3082–5. https://doi.org/10.1039/c7cc00045f.

    Article 

    Google Scholar 

  • Ou L, Wu Z, Hu X, Huang J, Yi Z, Gong Z, Li H, Peng K, Shu C, Koole LH. A tissue-adhesive F127 hydrogel delivers antioxidative copper-selenide nanoparticles for the treatment of dry eye disease. Acta Biomater. 2024;175:353–68. https://doi.org/10.1016/j.actbio.2023.12.021.

    Article 
    PubMed 

    Google Scholar 

  • Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomed. 2017. https://doi.org/10.2147/ijn.s129958.

    Article 

    Google Scholar 

  • Lai H, Zhang X, Song Z, Yuan Z, He L, Chen T. Facile synthesis of antioxidative nanotherapeutics using a microwave for efficient reversal of cisplatin-induced nephrotoxicity. Chem Eng J. 2019. https://doi.org/10.1016/j.cej.2019.123563.

    Article 

    Google Scholar 

  • Sardar R, Ahmed S, Shah AA, Yasin NA. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere. 2022;287:132332. https://doi.org/10.1016/j.chemosphere.2021.132332.

    Article 
    PubMed 

    Google Scholar 

  • Liu K, Du R, Chen F. Stability of the antioxidant peptide SeMet-Pro-Ser identified from selenized brown rice protein hydrolysates. Food Chem. 2020;319:126540. https://doi.org/10.1016/j.foodchem.2020.126540.

    Article 
    PubMed 

    Google Scholar 

  • Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer. 2023;23:710–24. https://doi.org/10.1038/s41568-023-00602-5.

    Article 
    PubMed 

    Google Scholar 

  • Abdifetah O, Na-Bangchang K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. Int J Nanomed. 2019. https://doi.org/10.2147/ijn.s213229.

    Article 

    Google Scholar 

  • Yao Y, Li P, He J, Wang D, Hu J, Yang X. Albumin-templated Bi2Se3-MnO2 nanocomposites with promoted catalase-like activity for enhanced radiotherapy of cancer. ACS Appl Mater Interfaces. 2021;13:28650–61. https://doi.org/10.1021/acsami.1c05669.

    Article 
    PubMed 

    Google Scholar 

  • Purohit MP, Verma NK, Kar AK, Singh A, Ghosh D, Patnaik S. Inhibition of thioredoxin reductase by targeted selenopolymeric nanocarriers synergizes the therapeutic efficacy of doxorubicin in MCF7 human breast cancer cells. ACS Appl Mater Interfaces. 2017;9:36493–512. https://doi.org/10.1021/acsami.7b07056.

    Article 
    PubMed 

    Google Scholar 

  • Xu C, Qiao L, Guo Y, Ma L, Cheng Y. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr Polym. 2018;195:576–85. https://doi.org/10.1016/j.carbpol.2018.04.110.

    Article 
    PubMed 

    Google Scholar 

  • Wang Y, Wang J, Hao H, Cai M, Wang S, Ma J, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano. 2016;10:9927–37. https://doi.org/10.1021/acsnano.6b03835.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du J, Gu Z, Yan L, Yong Y, Yi X, Zhang X, et al. Poly(Vinylpyrollidone)- and Selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv Mater. 2017;29:1701268. https://doi.org/10.1002/adma.201701268.

    Article 

    Google Scholar 

  • Wang X, Zhong X, Lei H, Geng Y, Zhao Q, Gong F, et al. Hollow Cu2Se nanozymes for tumor photothermal-catalytic therapy. Chem Mater. 2019;31:6174–86. https://doi.org/10.1021/acs.chemmater.9b01958.

    Article 

    Google Scholar 

  • Lv Y, Liu K, Liu D, Qu Y, Dai Y, Zhu Z, et al. Oral nanomedicine for cure of T2DM through whole-process regulation of glucose uptake/metabolism and mitochondrial repair in hepatocytes. Chem Eng J. 2025;166218. https://doi.org/10.1016/j.cej.2025.166218.

    Article 

    Google Scholar 

  • Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: the role of antioxidants in diabetes therapy and care. Biomed Pharmacother. 2024;181:117641. https://doi.org/10.1016/j.biopha.2024.117641.

    Article 
    PubMed 

    Google Scholar 

  • Sasaki M, Fujimoto S, Sato Y, Nishi Y, Mukai E, Yamano G, et al. Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic gk rats by suppressing lactate overproduction. Diabetes. 2013;62:1996–2003. https://doi.org/10.2337/db12-0903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Kon K, Hautala LC, Wang H, Wada T, Tsuneki H, Sasaoka T, Lehtonen S. Ebselen enhances insulin sensitivity and decreases oxidative stress by inhibiting SHIP2 and protects from inflammation in diabetic mice. Int J Biol Sci. 2022;18:1852–64. https://doi.org/10.7150/ijbs.66314.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–83. https://doi.org/10.1038/s41580-020-0230-3.

    Article 
    PubMed 

    Google Scholar 

  • Huang Q, Liu Z, Yang Y, Yang Y, Huang T, Hong Y, et al. Selenium nanodots (SENDs) as antioxidants and antioxidant-prodrugs to rescue islet β cells in type 2 diabetes mellitus by restoring mitophagy and alleviating endoplasmic reticulum stress. Adv Sci. 2023;10:2300880. https://doi.org/10.1002/advs.202300880.

    Article 

    Google Scholar 

  • Li X, Ma L, Zheng W, Chen T. Inhibition of islet amyloid polypeptide fibril formation by selenium-containing phycocyanin and prevention of beta cell apoptosis. Biomaterials. 2014;35:8596–604. https://doi.org/10.1016/j.biomaterials.2014.06.056.

    Article 
    PubMed 

    Google Scholar 

  • Wu J, Meng T, Zhang X, Tang S, Liu L, Xue J, et al. Glucose-responsive Zn(II)-porphyrin COF adhesive hydrogels with dual-active sites and GOX-like activity for accelerated wound healing. Adv Healthc Mater. 2025;14:2404076. https://doi.org/10.1002/adhm.202404076.

    Article 

    Google Scholar 

  • Wu Z, Hou Q, Qin L, Chen T, Yang K, Wei F, et al. Gpx-mimetic selenium-enriched yeast nanozymes ameliorate diabetic bone disease via dual-targeting of ROS scavenging and angiogenesis-osteogenesis coupling. Mater Today Bio. 2025;32:101836. https://doi.org/10.1016/j.mtbio.2025.101836.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishikura K, Misu H, Kumazaki M, Takayama H, Matsuzawa-Nagata N, Tajima N, et al. Selenoprotein p as a diabetes-associated hepatokine that impairs angiogenesis by inducing VEGF resistance in vascular endothelial cells. Diabetologia. 2014;57:1968–76. https://doi.org/10.1007/s00125-014-3306-9.

    Article 
    PubMed 

    Google Scholar 

  • Jeffcoate W, Boyko EJ, Game F, Cowled P, Senneville E, Fitridge R. Causes, prevention, and management of diabetes-related foot ulcers. Lancet Diabetes Endocrinol. 2024;12:472–82. https://doi.org/10.1016/s2213-8587(24)00110-4.

    Article 
    PubMed 

    Google Scholar 

  • Wei T, Pan T, Peng X, Zhang M, Guo R, Guo Y, Mei X, Zhang Y, Qi J, Dong F, et al. Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds. Nat Nanotechnol. 2024;19:1178–89. https://doi.org/10.1038/s41565-024-01660-y.

    Article 
    PubMed 

    Google Scholar 

  • Su Z, Chen Y, Liang H, Liu Z, Wu D, Li J, et al. Decellularized periosteum and sodium alginate-based photoresponsive dressing with copper selenide nanoparticles for infected-wound healing in diabetic mice. Int J Biol Macromol. 2024;268:131895. https://doi.org/10.1016/j.ijbiomac.2024.131895.

    Article 
    PubMed 

    Google Scholar 

  • Shen Y, Li S, Hou X, Yu J, Zhu Y, Zhao C, et al. Ultrasound-triggered nanocomposite lever hydrogels with a full repair system accelerates diabetic foot ulcer repair. Adv Sci. 2025;12:2500720. https://doi.org/10.1002/advs.202500720.

    Article 

    Google Scholar 

  • Yang L, Zhang D, Li W, Lin H, Ding C, Liu Q, et al. Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy. Nat Commun. 2023;14:7658. https://doi.org/10.1038/s41467-023-43067-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao N, Yuan W. Self-healing and shape-adaptive nanocomposite hydrogels with anti-inflammatory, antioxidant, antibacterial activities and hemostasis for real-time visual regeneration of diabetic wounds. Compos Part B: Eng. 2023;262:110819. https://doi.org/10.1016/j.compositesb.2023.110819.

    Article 

    Google Scholar 

  • Zhang Z, Zhang Y, Peng L, Xing Y, Zhou X, Zheng S, et al. Multifunctional dual-layer microneedles loaded with selenium-doped carbon quantum dots and Astilbin for ameliorating diabetic wound healing. Mater Today Bio. 2025;32:101739. https://doi.org/10.1016/j.mtbio.2025.101739.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li W, Bei Y, Pan X, Zhu J, Zhang Z, Zhang T, et al. Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater Res. 2023;27:49. https://doi.org/10.1186/s40824-023-00367-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Y, Yang M, Li Y, Liu Y, Su H, Zhang W, et al. A multifunctional living hydrogel for the synergistic management of infected diabetic wounds. Mater Today Bio. 2025;32:101787. https://doi.org/10.1016/j.mtbio.2025.101787.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–83. https://doi.org/10.1126/science.aag2590.

    Article 
    PubMed 

    Google Scholar 

  • Zhang R, Chen X, Cheng Y, Chen Z, Li X, Deng Y. Recent advances of nanomaterials for intervention in Parkinson’s disease in the context of anti-inflammation. Coord Chem Rev. 2024;502:215616. https://doi.org/10.1016/j.ccr.2023.215616.

    Article 

    Google Scholar 

  • Liu X, Jesus S-G, Kong Z, Fan N, Mi Y, Wang Q, et al. Polysaccharide nano–selenium in the regulation of neuroinflammation: a review of mechanisms, functional potential, and activity evaluation. Carbohydr Polym. 2025;366:123833. https://doi.org/10.1016/j.carbpol.2025.123833.

    Article 
    PubMed 

    Google Scholar 

  • Zhou F, He Y, Zhang M, Gong X, Liu X, Tu R, Yang B. Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage. J Nanobiotechnol. 2024;22:731. https://doi.org/10.1186/s12951-024-03023-0.

    Article 

    Google Scholar 

  • Geng X, Liu K, Li P, Xing H, Pei X, Chang J, et al. A multipronged strategy for encephalitis: oxidative stress reduction and inflammatory microenvironment modulation by a neuroprotective selenium-based nanomedicine. Chem Eng J. 2024;492:152176. https://doi.org/10.1016/j.cej.2024.152176.

    Article 

    Google Scholar 

  • Gong Y, Huang A, Guo X, Jia Z, Chen X, Zhu X, Xia Y, Liu J, Xu Y, Qin X. Selenium-core nanozymes dynamically regulates Aβ & neuroinflammation circulation: augmenting repair of nervous damage. Chem Eng J. 2021;418:129345. https://doi.org/10.1016/j.cej.2021.129345.

    Article 

    Google Scholar 

  • Wang J, Wang Z, Li Y, Hou Y, Yin C, Yang E, et al. Blood brain barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer’s disease. Biomaterials. 2023;302:122359. https://doi.org/10.1016/j.biomaterials.2023.122359.

    Article 
    PubMed 

    Google Scholar 

  • Zhang C, Wang H, Liang W, Yang Y, Cong C, Wang Y, et al. Diphenyl diselenide protects motor neurons through inhibition of microglia-mediated inflammatory injury in amyotrophic lateral sclerosis. Pharmacol Res. 2021;165:105457. https://doi.org/10.1016/j.phrs.2021.105457.

    Article 
    PubMed 

    Google Scholar 

  • Liu J, Mai L, Tan A, Du Y, Luo J, Xu S, et al. Self-enhancing drug pair-driven selenium nanotherapeutics reverses microglial pyroptosis through NLRP3/caspase-1 pathway and neuronal apoptosis for treatment of spinal cord injury. Adv Funct Mater. 2025. https://doi.org/10.1002/adfm.202503505.

    Article 
    PubMed 

    Google Scholar 

  • Rao S, Lin Y, Lin R, Liu J, Wang H, Hu W, Chen B, Chen T. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J Nanobiotechnol. 2022;20:278. https://doi.org/10.1186/s12951-022-01490-x.

    Article 

    Google Scholar 

  • Ji Z, Zheng J, Ma Y, Lei H, Lin W, Huang J, et al. Emergency treatment and photoacoustic assessment of spinal cord injury using reversible dual-signal transform-based selenium antioxidant. Small. 2023;19:2207888. https://doi.org/10.1002/smll.202207888.

    Article 

    Google Scholar 

  • Li C, Wu Y, Chen Q, Luo Y, Liu P, Zhou Z, Zhao Z, Zhang T, Su B, Sun T, Jiang C. Pleiotropic microenvironment remodeling micelles for cerebral ischemia-reperfusion injury therapy by inhibiting neuronal ferroptosis and glial overactivation. ACS Nano. 2023;17:18164–77. https://doi.org/10.1021/acsnano.3c05038.

    Article 
    PubMed 

    Google Scholar 

  • Kong J, Zou R, Chu R, Hu N, Liu J, Sun Y, et al. An ultrasmall Cu/Cu2O nanoparticle-based diselenide-bridged nanoplatform mediating reactive oxygen species scavenging and neuronal membrane enhancement for targeted therapy of ischemic stroke. ACS Nano. 2024;18:4140–58. https://doi.org/10.1021/acsnano.3c08734.

    Article 
    PubMed 

    Google Scholar 

  • Wang Y, Liao X, Guo Q, Zhang H, Ye L, Yu L, Kong X, Jiang Y, Zhao P, Cai K, Cheng H. Dual-pathway targeted therapy for parkinson’s disease: biomimetic nanosomes inhibit ferroptosis and pyroptosis through NLRP3 inflammasome regulation. Bioactive Mater. 2025;51:825–40. https://doi.org/10.1016/j.bioactmat.2025.06.033.

    Article 

    Google Scholar 

  • Cao B, Zhang H, Sun M, Xu C, Kuang H, Xu L. Chiral MoSe2 nanoparticles for ultrasensitive monitoring of reactive oxygen species in vivo. Adv Mater. 2024;36:2208037. https://doi.org/10.1002/adma.202208037.

    Article 

    Google Scholar 

  • Jo HJ, Im G-B, Robby AI, In I, Bhang SH, Shit A, et al. ROS-responsive mechanically and electronically controllable conductive hydrogel sensor with NIR modulated photothermal therapy. Chem Eng J. 2023;455:140729. https://doi.org/10.1016/j.cej.2022.140729.

    Article 

    Google Scholar 

  • Kim SG, Ryplida B, Giang NN, Lee G, Lee KD, Park SY. Tuning conductivity and roughness of diselenide polymer dot-coated surface for ROS-mediated selective real-time wireless detection of cancer cells. Chem Eng J. 2021;426:130880. https://doi.org/10.1016/j.cej.2021.130880.

    Article 

    Google Scholar 

  • Benson S, Kiang A, Lochenie C, Lal N, Mohanan SMPC, Williams GOS, Dhaliwal K, Mills B, Vendrell M. Environmentally sensitive photosensitizers enable targeted photodynamic ablation of Gram-positive antibiotic resistant bacteria. Theranostics. 2023;13:3814–25. https://doi.org/10.7150/thno.84187.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao F, Pang Y, Wang Y, Yang X, Song W, Nie X, et al. Nanocellulose/selenoglutathione-enhanced antioxidant, elastic, antibacterial, and conductive hydrogels as strain sensors. ACS Sustain Chem Eng. 2024;12:13622–33. https://doi.org/10.1021/acssuschemeng.4c04986.

    Article 

    Google Scholar 

  • Ma X, Fan Z, Peng J, Nie L. Ischemic area-targeting and self-monitoring nanoprobes ameliorate myocardial ischemia/reperfusion injury by scavenging ROS and counteracting cardiac inflammation. Adv Sci. 2025;12:2414518. https://doi.org/10.1002/advs.202414518.

    Article 

    Google Scholar 

  • Subba SH, Jiang S, Jin E-J, Park SY. Hypoxia-sensitive smart hydrogel biosensor for distinct mechanical and electrical signals with muscle ischemia regeneration. Adv Funct Mater. 2025;2417935. https://doi.org/10.1002/adfm.202417935. n/a.

  • Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001;88:1259–66. https://doi.org/10.1161/hh1201.091960.

    Article 
    PubMed 

    Google Scholar 

  • Zhang X, He C, Yan R, Chen Y, Zhao P, Li M, et al. HIF-1 dependent reversal of cisplatin resistance via anti-oxidative nano selenium for effective cancer therapy. Chem Eng J. 2020;380:122540. https://doi.org/10.1016/j.cej.2019.122540.

    Article 

    Google Scholar 

  • Chen C, Ma J, Duan S, Xue M, Yang Z, Ma Z, Ji J, Ma Y, Qing G, Guo K, et al. Mitigation of ischemia/reperfusion injury via selenium nanoparticles: suppression of STAT1 to inhibit cardiomyocyte oxidative stress and inflammation. Biomaterials. 2025;318:123119. https://doi.org/10.1016/j.biomaterials.2025.123119.

    Article 
    PubMed 

    Google Scholar 

  • Quispe RL, Jaramillo ML, Galant LS, Engel D, Dafre AL, Teixeira da Rocha JB, Radi R, Farina M, de Bem AF. Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: involvement of the glutathione-dependent antioxidant system. Redox Biol. 2019;20:118–29. https://doi.org/10.1016/j.redox.2018.09.014.

    Article 
    PubMed 

    Google Scholar 

  • Li X, Wang Y, Chen Y, Zhou P, Wei K, Wang H, et al. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials. 2020;257:120253. https://doi.org/10.1016/j.biomaterials.2020.120253.

    Article 
    PubMed 

    Google Scholar 

  • Zhang Y, Hu M, Zhang W, Zhang X. Construction of tellurium-doped mesoporous bioactive glass nanoparticles for bone cancer therapy by promoting ROS-mediated apoptosis and antibacterial activity. J Colloid Interface Sci. 2022;610:719–30. https://doi.org/10.1016/j.jcis.2021.11.122.

    Article 
    PubMed 

    Google Scholar 

  • Zhai Z, Ouyang W, Yao Y, Zhang Y, Zhang H, Xu F, et al. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioact Mater. 2022;14:430–42. https://doi.org/10.1016/j.bioactmat.2022.01.047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu R, He Q, Li Z, Ren Y, Liao Y, Zhang Z, et al. ROS-cleavable diselenide nanomedicine for NIR-controlled drug release and on-demand synergistic chemo-photodynamic therapy. Acta Biomater. 2022;153:442–52. https://doi.org/10.1016/j.actbio.2022.09.061.

    Article 
    PubMed 

    Google Scholar 

  • Xu J, Chu T, Yu T, Li N, Wang C, Li C, et al. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis. ACS Nano. 2022;16:13037–48. https://doi.org/10.1021/acsnano.2c05558.

    Article 
    PubMed 

    Google Scholar 

  • Xie B, Zeng D, Yang M, Tang Z, He L, Chen T. Translational selenium nanoparticles to attenuate allergic dermatitis through Nrf2-Keap1-driven activation of selenoproteins. ACS Nano. 2023;17:14053–68. https://doi.org/10.1021/acsnano.3c04344.

    Article 
    PubMed 

    Google Scholar 

  • Worldwide.espacenet.com, Self-assembled selenium peptide nano material for targeting mitochondria as well as preparation method and application of self-assembled selenium peptide nano material, 2023, CN116350615A.

  • Worldwide.espacenet.com. Selenium-coated zinc/cerium-based nano-enzyme and application thereof in regulating intestinal microenvironment to treat inflammatory bowel disease. CN119454614A; 2024.

  • Worldwide.espacenet.com. Use of nano-selenium cordyceps militaris aqueous extract in reducing radiotherapy injury and protective agent, WO2023082217A1.

  • ClinicalTrials.gov, Selenium and Prostate Cancer: Clinical Trial on Availability to Prostate Tissue and Effects on Gene Expression, 2011, NCT00446901.

  • ClinicalTrials.gov, Selenium and Prostate Cancer: Clinical Trial on Availability to Prostate Tissue and Effects on Gene Expression, 2021, NCT04005222.

  • ClinicalTrials.gov, Selenium in the Prevention of Cancer. 2015, NCT00022165.

  • ClinicalTrials.gov, Selenium Supplementation in Chronic Obstructive Pulmonary Disease (COPD) Patients. 2008, ID: NCT00186706.

  • Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J Hazard Mater. 2021;402:123570. https://doi.org/10.1016/j.jhazmat.2020.123570.

    Article 
    PubMed 

    Google Scholar 

  • Smith PJ, Tappel AL, Chow CK. Glutathione peroxidase activity as a function of dietary selenomethionine. Nature. 1974;247:392–3. https://doi.org/10.1038/247392a0.

    Article 
    PubMed 

    Google Scholar 

Continue Reading