Demarco, F. F. et al. Longevity of composite restorations is definitely not only about materials. Dent. Mater. 39 (1), 1–12. https://doi.org/10.1016/j.dental.2022.11.009 (2023).
Google Scholar
Askar, H. et al. Secondary caries: what is it, and how it can be controlled, detected, and managed? Clin. Oral Investig. 24 (5), 1869–1876. https://doi.org/10.1007/s00784-020-03268-7 (2020).
Google Scholar
Brouwer, F., Askar, H., Paris, S. & Schwendicke, F. Detecting secondary caries lesions: a systematic review and meta-analysis. J. Dent. Res. 95 (2), 143–151. https://doi.org/10.1177/0022034515611041 (2016).
Google Scholar
Signori, C. et al. Clinical relevance of studies on the visual and radiographic methods for detecting secondary caries lesions-a systematic review. J. Dent. 75, 22–33. https://doi.org/10.1016/j.jdent.2018.05.018 (2018).
Google Scholar
Gimenez, T. et al. What is the most accurate method for detecting caries lesions? A systematic review. Commun. Dent. Oral Epidemiol. 49 (3), 216–224. https://doi.org/10.1111/cdoe.12641 (2021).
Google Scholar
Moro, B. L. P. et al. Clinical accuracy of two different criteria for the detection of caries lesions around restorations in primary teeth. Caries Res. 56 (2), 98–108. https://doi.org/10.1159/000523951 (2022).
Google Scholar
Uehara, J. L. S. et al. Accuracy of two visual criteria for the assessment of caries around restorations: a delayed-type cross-sectional study. Caries Res. 57 (1), 12–20. https://doi.org/10.1159/000528730 (2023).
Google Scholar
Rahimi, H. M. et al. Deep learning for caries detection: a systematic review. J. Dent. 122, 104115. https://doi.org/10.1016/j.jdent.2022.104115 (2022).
Google Scholar
Duong, D. L., Kabir, M. H. & Kuo, R. F. Automated caries detection with smartphone color photography using machine learning. Health Inf. J. 27 (2), 14604582211007530, 1–17. https://doi.org/10.1177/14604582211007530 (2021).
Google Scholar
Yu, H. et al. A new technique for diagnosis of dental caries on the children’s first permanent molar. IEEE Access. 8, 185776–185785. https://doi.org/10.1109/ACCESS.2020.3029454 (2020).
Google Scholar
Geetha, V., Aprameya, K. S. & Hinduja, D. M. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inform. Sci. Syst. 8 (1), 8, 1–14. https://doi.org/10.1007/s13755-019-0096-y (2020).
Google Scholar
Cantu, G. et al. Detecting caries lesions of different radiographic on bitewings using deep learning. J. Dent. 100 (103425), 103425. https://doi.org/10.1016/j.jdent.2020.103425 (2020).
Google Scholar
Vinayahalingam, S. et al. Classification of caries in third molars on panoramic radiographs using deep learning. Sci. Rep. 11 (1), 12609. https://doi.org/10.1038/s41598-021-92121-2 (2021).
Google Scholar
Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Sci. Rep. 11 (1), 16807. https://doi.org/10.1038/s41598-021-96368-7 (2021).
Google Scholar
Mao, Y. C. et al. Caries and restoration detection using bitewing film based on transfer learning with CNNs. Sens. (Basel). 21 (13), 4613. https://doi.org/10.3390/s21134613 (2021).
Google Scholar
Bayraktar, Y. & Ayan, E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin. Oral Invest. 26 (1), 623–632. https://doi.org/10.1007/s00784-021-04040-1 (2022).
Google Scholar
Kuhnisch, J., Meyer, O., Hesenius, M., Hickel, R. & Gruhn, V. Caries detection on intraoral images using artificial intelligence. J. Dent. Res. 101 (2), 158–165. https://doi.org/10.1177/00220345211032524 (2022).
Google Scholar
Vimalarani, G. & Ramachandraiah, U. Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model. Microprocess. Microsyst. 94 https://doi.org/10.1016/j.micpro.2022.104654 (2022).
Zhu, Y. et al. Faster-RCNN based intelligent detection and localization of dental caries. Displays 74, 102201. https://doi.org/10.1016/j.displa.2022.102201 (2022).
Google Scholar
Kumari, A. R., Rao, S. N. & Reddy, P. R. Design of hybrid dental caries segmentation and caries detection with meta-heuristic-based ResNeXt-RNN. Biomed. Signal Process. Control. 78, 103961. https://doi.org/10.1016/j.bspc.2022.103961 (2022).
Google Scholar
Imak, A. et al. Dental caries detection using score-based multi-input deep convolutional neural network. IEEE Access. 10, 18320–18329. https://doi.org/10.1109/ACCESS.2022.3150358 (2022).
Google Scholar
Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E. K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health. 22 (1), 573, 1–9. https://doi.org/10.1186/s12903-022-02589-1 (2022).
Google Scholar
Kim, J., Lee, H. S., Song, I. S. & Jung, K. H. DeNTNet: Deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 9 (1), 17615. https://doi.org/10.1038/s41598-019-53758-2 (2019).
Google Scholar
Hung, M. et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology 36 (4), 395–404. https://doi.org/10.1111/ger.12432 (2019).
Google Scholar
Abdulaziz, A., Kheraif, A., Ashraf, Wahba, A. & Fouad, H. Detection of dental diseases from radiographic 2d dental image using a hybrid graph-cut technique and convolutional neural network. Measurement 146, 333–342. https://doi.org/10.1016/j.measurement.2019.06.014 (2019).
Roy, R., Ghosh, S. & Ghosh, A. Clinical ultrasound image standardization using histogram specification. Comput. Biol. Med. 120, 103746, 1–13. https://doi.org/10.1016/j.compbiomed.2020.103746 (2020).
Google Scholar
Wisaeng, K. Retinal blood-vessel extraction using weighted kernel fuzzy C-means clustering and dilation-based functions. Diagnostics 13 (3), 342, 1–21. https://doi.org/10.3390/diagnostics13030342 (2023).
Google Scholar
Xu, L., Liu, S. & Ma, J. Linear optimal filter for descriptor systems with time-correlated measurement noise. In 40th Chinese Control Conference (CCC), Shanghai, China, 3048–3053. https://doi.org/10.23919/CCC52363.2021.9549878 (2021).
Mardiris, V. & Chatzis, V. A configurable design for morphological erosion and dilation operations in image processing using quantum-dot cellular automata. J. Eng. Sci. Technol. Rev. 9 (2), 25–30. https://doi.org/10.25103/jestr.092.05 (2016).
Google Scholar
Yu, K., Jiang, L., Fan, J. S., Xie, R. & Lan A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation. Expert Syst. Appl. 241, 122270, 1–39. https://doi.org/10.1016/j.eswa.2023.122270 (2024).
Google Scholar
Yang, M. S. & Nataliani, Y. A. Feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 26 (2), 817–835. https://doi.org/10.1109/TFUZZ.2017.2692203 (2018).
Google Scholar
Xu, S. et al. Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference. Expert Syst. Appl. 238, 121812. https://doi.org/10.1016/j.eswa.2023.121812 (2024).
Google Scholar
Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A. & Saad, F. S. A. Performance analysis of image thresholding: Otsu technique. Measurement 114, 298–307. https://doi.org/10.1016/j.measurement.2017.09.052 (2018).
Google Scholar
Faragallah, O. S., Hoseny, H. M. E. & Sayed, H. S. E. Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform. Biomed. Signal Process. Control. 84, 104712, 1–14. https://doi.org/10.1016/j.bspc.2023.104712 (2023).
Google Scholar
Qayyum, A. et al. Dental caries detection using a semi-supervised learning approach. Sci. Rep. 13, 749, 1–11. https://doi.org/10.1038/s41598-023-27808-9 (2023).
Google Scholar