Nordet, G. et al. Influence of laser wavelength on the powder bed fusion of pure copper. Prog. Addit. Manuf. 10, 1489–1509 (2025).
Calignano, F., Bove, A. & Pavese, M. Processing of pure copper by powder bed fusion with infrared laser. Results Eng. 25, 104497 (2025).
Jiang, Q. et al. A review on additive manufacturing of pure copper. Coatings 11, 740 (2021). https://doi.org/10.3390/coatings11060740 (2021).
De Terris, T., Baffie, T. & Ribière, C. Additive manufacturing of pure copper: A review and comparison of physical, microstructural, and mechanical properties of samples manufactured with laser-powder bed fusion (L-PBF), electron beam melting (EBM) and metal fused deposition modelling (MFDM) technologies. Int. J. Mater. Form. 16, 32 (2023).
Tiismus, H., Kallaste, A., Vaimann, T. & Rassõlkin, A. State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines. Addit. Manuf. 55, 102778 (2022). https://doi.org/10.1016/j.addma.2022.102778 (2022).
Nocheseda, C. J. C., Liza, F. P., Collera, A. K. M., Caldona, E. B. & Advincula, R. C. 3D printing of metals using biodegradable cellulose hydrogel inks. Addit. Manuf. 48, 102380 (2021).
Miyanaji, H. et al. Binder jetting additive manufacturing of copper foam structures. Addit. Manuf. 32, 100960 (2020).
Singh, G., Missiaen, J. M., Bouvard, D. & Chaix, J. M. Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization. Addit. Manuf. 38, 101778 (2021).
Miyanaji, H., Rahman, K. M., Da, M. & Williams, C. B. Effect of fine powder particles on quality of binder jetting parts. Addit. Manuf. 36, 101587 (2020).
Jadhav, S. D., Goossens, L. R., Kinds, Y., Van Hooreweder, B. & Vanmeensel, K. Laser-based powder bed fusion additive manufacturing of pure copper. Addit. Manuf. 42, 101990 (2021).
Hazeli, K., June, D., Anantwar, P. & Babamiri, B. B. Mechanical behavior of additively manufactured GRCop-84 copper alloy lattice structures. Addit. Manuf. 56, 102928 (2022).
Kolli, S. et al. Process optimization and characterization of dense pure copper parts produced by paste-based 3D micro-extrusion. Addit. Manuf. 73, 103670 (2023).
Speidel, A. et al. Chemical recovery of spent copper powder in laser powder bed fusion. Addit. Manuf. 52, 102711 (2022).
Santo, L. et al. American Institute of Physics Inc. Local density measurement of additive manufactured copper parts by instrumented indentation. In AIP Conference Proceedings , vol. 1960 (2018).
Qu, S., Wang, L., Ding, J., Lu, Y. & Song, X. Influence of heat treatment on the microstructure and mechanical properties of pure copper components fabricated via Micro-Laser powder bed fusion. Materials 17, 6270 (2024).
Wei, Y. et al. Microstructures and mechanical properties of pure copper manufactured by high-strength laser powder bed fusion. Opt. Laser Technol. 182, 112134 (2025).
Robinson, J. et al. Electrical conductivity of additively manufactured copper and silver for electrical winding applications. Materials 15, 7563 (2022).
Tertuliano, O. A. et al. Nanoparticle-enhanced absorptivity of copper during laser powder bed fusion. Addit. Manuf. 51, 102562 (2022).
Qu, S., Ding, J., Fu, J., Fu, M. & Song, X. Anisotropic material properties of pure copper with fine-grained microstructure fabricated by laser powder bed fusion process. Addit. Manuf. 59, 103082 (2022).
Jadhav, S. D. et al. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 270, 47–58 (2019).
Fu, Z., Ye, J., Franke, M. & Körner, C. A novel approach for powder bed-based additive manufacturing of compositionally graded composites. Addit. Manuf. 56, 102916 (2022).
Qu, S. et al. High-precision laser powder bed fusion processing of pure copper. Addit. Manuf. 48, 102417 (2021).
Romano, T. et al. Pure copper membranes manufactured by green laser powder bed fusion with varying wall-thickness and building orientation: Microstructure, properties, and vacuum tightness performance. Vacuum 233, 113995 (2025).
Wang, D., Li, K., Yao, J., Du, B. & Xu, Y. Porosity, texture, and mechanical properties of pure copper fabricated by fine green laser powder bed fusion. Opt. Laser Technol. 181, 112009 (2025).
Thomas, A. et al. Effect of the build orientation on mechanical and electrical properties of pure Cu fabricated by E-PBF. Addit. Manuf. 48, 102393 (2021).
Jadhav, S. D., Vleugels, J., Kruth, J. P., Van Humbeeck, J. & Vanmeensel, K. Mechanical and electrical properties of selective laser-melted parts produced from surface-oxidized copper powder. Mater. Des. Process. Commun. 2, e94 (2020).
Jadhav, S. D. et al. Influence of carbon nanoparticle addition (and impurities) on selective laser melting of pure copper. Materials 12, 2469 (2019).
Huang, J. et al. Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology. Surf. Coat. Technol. 395, 125936 (2020).
Yan, X. et al. Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Mater. Sci. Eng. A. 789, 139615 (2020).
Ikeshoji, T. T., Nakamura, K., Yonehara, M., Imai, K. & Kyogoku, H. Selective laser melting of pure copper. JOM 70, 396–400 (2018).
Colopi, M., Caprio, L., Demir, A. G. & Previtali, B. Selective laser melting of pure Cu with a 1 kW single mode fiber laser. Procedia CIRP. 74, 59–63 (2018).
Colopi, M., Demir, A. G., Caprio, L. & Previtali, B. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. Int. J. Adv. Manuf. Technol. 104, 2473–2486 (2019).
Hu, R. et al. Process of pure copper fabricated by selective laser melting (SLM) technology under moderate laser power with re-melting strategy. Materials 16, 2642 (2023).
Aghayar, Y. et al. Laser powder bed fusion of pure copper electrodes. Mater. Des. 239, 112742 (2024).
Nagy, P. B. Surface roughness influence on eddy current electrical conductivity measurements (2003). https://www.researchgate.net/publication/279890948.
Corona, D., Giannini, O., Guarino, S., Ponticelli, G. S. & Zarcone, M. Experimental investigation on the electrical, thermal, and mechanical properties of laser powder bed fused copper alloys. J. Manuf. Process. 76, 320–334 (2022).
Gargalis, L. et al. Determining processing behaviour of pure Cu in laser powder bed fusion using direct micro-calorimetry. J Mater. Process. Technol. 294, 117130 (2021).
Gao, S. et al. High-strength and high-conductivity pure copper by powder bed fusion with a medium-power infrared laser. Mater. Des. 258, 114551 (2025).
Megahed, S. et al. Manufacturing of pure copper with electron beam melting and the effect of thermal and abrasive post-processing on microstructure and electric conductivity. Materials 16, 73 (2023).
Ortmann, R. et al. Powder bed fusion of pure copper using an electron beam: A comparative study on the material properties obtained using vector- and spot-based exposure. Prog. Addit. Manuf. https://doi.org/10.1007/s40964-025-01344-6 (2025).
Mao, Q., Zhang, Y., Guo, Y. & Zhao, Y. Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire. Commun. Mater. 2, 46 (2021).
Li, X. et al. Texture evolution and its influence mechanism on properties of single crystal copper and polycrystalline copper during cumulative deformation. J. Mater. Res. Technol. 24, 6808–6819 (2023).












