Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144 (5), 646–674 (2011).
Google Scholar
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York) 324 (5930), 1029–1033 (2009).
Google Scholar
Warburg, O. On the Origin of Cancer Cells Vol. 123, p. 309–314 (Science, 1956). 3191.
Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 11 (5), 325–337 (2011).
Google Scholar
Jose, C., Bellance, N. & Rossignol, R. Choosing between Glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta. 1807 (6), 552–561 (2011).
Google Scholar
Bonnet, S. et al. A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11 (1), 37–51 (2007).
Google Scholar
Greene, J., Segaran, A. & Lord, S. Targeting OXPHOS and the electron transport chain in cancer; molecular and therapeutic implications. Sem. Cancer Biol. 86 (Pt 2), 851–859 (2022).
Google Scholar
Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 21 (3), 297–308 (2012).
Google Scholar
Pavlova, N. N. & Thompson, C. B. The Emerg. Hallm. Cancer Metabolism Cell. Metabolism, 23(1): 27–47. (2016).
Google Scholar
Dang, C. V. MYC on the path to cancer. Cell 149 (1), 22–35 (2012).
Google Scholar
Zong, W. X., Rabinowitz, J. D. & White, E. Mitochondria Cancer Mol. Cell., 61(5): 667–676. (2016).
Google Scholar
Sancho, P. et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabol. 22 (4), 590–605 (2015).
Google Scholar
Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Sem. Cancer Biol. 31, 28–35 (2015).
Google Scholar
Fendt, S. M., Frezza, C. & Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 10 (12), 1797–1807 (2020).
Google Scholar
Kreuzaler, P. et al. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol. Metabolism, 33. 83-101 (2020). doi:10.1016/j.molmet.2019.08.021
Bailleul, J. & Vlashi, E. Glioblastomas: Hijacking Metabolism To Build a Flexible Shield for Therapy Resistance Vol. 39, p. 957–979 (Antioxidants & Redox Signaling, 2023). 13–15.
Obre, E. & Rossignol, R. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int. J. Biochem. Cell Biol. 59, 167–181 (2015).
Google Scholar
Yang, B. & Shi, J. Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Adv. Sci. (Weinheim Baden-Wurttemberg Germany). 7 (18), p2001388 (2020).
Google Scholar
Luo, Z. et al. Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy. Cancer Lett. 575, 216396 (2023).
Google Scholar
Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9-15 (2015). doi:10.1038/nchembio.1712
Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an achilles’ heel? Nat. Rev. Cancer. 14 (11), 709–721 (2014).
Google Scholar
Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 4 (6), 437–447 (2004).
Google Scholar
Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer. 6 (8), 583–592 (2006).
Google Scholar
Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl. Acad. Sci. U.S.A. 108 (38), 16062–16067 (2011).
Google Scholar
Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23 (10), 1124–1134 (2017).
Google Scholar
Janiszewska, M. et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26 (17), 1926–1944 (2012).
Google Scholar
Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514 (7524), 628–632 (2014).
Google Scholar
Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24 (7), 1036–1046 (2018).
Google Scholar
Baran, N. et al. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat. Commun. 13 (1), 2801 (2022).
Google Scholar
Zhou, Y. et al. Recent advances of mitochondrial complex I inhibitors for cancer therapy: current status and future perspectives. Eur. J. Med. Chem. 251, 115219 (2023).
Google Scholar
Al Assi, A. et al. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity. Cell Death Dis. 15 (5), 311 (2024).
Google Scholar
Basit, F. et al. Mitochondrial complex I Inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8 (3), e2716 (2017).
Google Scholar
Yap, T. A. et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat. Med. 29 (1), 115–126 (2023).
Google Scholar
Tufail, M., Jiang, C. H. & Li, N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol. Cancer. 23 (1), 203 (2024).
Google Scholar
Gao, X. et al. Inhibition of Mitochondria NADH-Ubiquinone Oxidoreductase (complex I) Sensitizes the Radioresistant Glioma U87MG Cells To Radiation Vol. 129, p. 110460 (Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2020).
Hess-Stumpp, H. J. C. R. Abstract LB-244: BAY 87-2243, an inhibitor of HIF-1α-induced gene activation, showed promising anti-tumor efficacy in combination with anti-angiogenic therapy and irradiation in preclinical tumor models. Cancer Res. 72 (8_Supplement), LB-244-LB-244 (2012).
Google Scholar
Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Research: Official J. Am. Association Cancer Res. 24 (11), 2482–2490 (2018).
Google Scholar
Liu, Z. et al.Synergistic Antitumor Effect of Combined Radiotherapy and Engineered Salmonella typhimurium in an Intracranial Sarcoma Mouse Model. Vaccines 11 (7), (2023).
Tran, T. A. T. et al. Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus Irinotecan in a glioblastoma mouse model. Front. Immunol. 13, 1009484 (2022).
Google Scholar
Smilowitz, H. M. et al. Increasing radiation dose improves immunotherapy outcome and prolongation of tumor dormancy in a subgroup of mice treated for advanced intracerebral melanoma. Cancer Immunol. Immunotherapy: CII. 65 (2), 127–139 (2016).
Google Scholar
Lan, X. Y. et al. Unlocking the potential of Ultra-High dose fractionated radiation for effective treatment of glioblastoma in mice. J. Cancer. 15 (13), 4060–4071 (2024).
Google Scholar
Zarghami, N. et al. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response. Radiation Oncol. (London England). 13 (1), 104 (2018).
Google Scholar
Zanoni, M. et al. Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma. Cell Death Dis. 13 (1), 80 (2022).
Google Scholar
Jin, L. et al. The ROS/AKT/S6K axis induces corneal epithelial dysfunctions under LED blue light exposure. Ecotoxicol. Environ. Saf. 287, 117345 (2024).
Google Scholar
Jiang, J. et al. Catechin Promotes Endoplasmic Reticulum stress-mediated Gastric Cancer Cell Apoptosis Via NOX4-induced Reactive Oxygen Species (Molecular and Cellular Biochemistry, 2024).
DeBerardinis, R. J. et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 7 (1), 11–20 (2008).
Google Scholar
Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal. Transduct. Target. Therapy. 9 (1), 124 (2024).
Google Scholar
Raimondi, V., Ciccarese, F. & Ciminale, V. Oncogenic pathways and the electron transport chain: a DangeROS liaison. Br. J. Cancer. 122 (2), 168–181 (2020).
Google Scholar
Perillo, B. et al. ROS in cancer therapy: the bright side of the Moon. Exp. Mol. Med. 52 (2), 192–203 (2020).
Google Scholar
Dosunmu-Ogunbi, A. M. et al. Decoding the role of SOD2 in sickle cell disease. Blood Adv. 3 (17), 2679–2687 (2019).
Google Scholar
Bastin, J. et al. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J. Translational Med. 21 (1), 522 (2023).
Google Scholar
Hubackova, S. et al. Mitochondria-driven elimination of cancer and senescent cells. Biol. Chem. 400 (2), 141–148 (2019).
Google Scholar
Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11 (1), 102 (2020).
Google Scholar
Martell, E. et al. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 Medulloblastoma. Nat. Commun. 14 (1), 2502 (2023).
Google Scholar
Zhang, Z. et al. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 89, 104483 (2023).
Google Scholar
Ivashkevich, A. et al. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327 (1–2), 123–133 (2012).
Google Scholar
Guo, C. et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Res. 8 (21), 2003–2014 (2013).
Google Scholar
Borodkina, A. et al. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging 6 (6), 481–495 (2014).
Google Scholar
Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64 (7), 2390–2396 (2004).
Google Scholar
Alarifi, S. et al. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int. J. Nanomed. 12, 4541–4551 (2017).
Google Scholar
Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25 (1), 46–55 (2018).
Google Scholar
Chipuk, J. E. & Green, D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18 (4), 157–164 (2008).
Google Scholar
Wang, C. & Youle, R. J. The role of mitochondria in apoptosis*. Annu. Rev. Genet., 43. 95-118 (2009). doi:10.1146/annurev-genet-102108-134850
Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria Cancer Cell., 166(3): 555–566. (2016).
Google Scholar
Porter, A. G. & Jänicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 6, 99-104 (1999). doi:10.1038/sj.cdd.4400476
Ferreira, K. S. et al. Caspase-3 feeds back on caspase-8, bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis: Int. J. Program. Cell. Death. 17 (5), 503–515 (2012).
Google Scholar
Diepart, C. et al. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res. 72 (2), 482–490 (2012).
Google Scholar
Park, Y. Y. et al. ATP Depletion during Mitotic Arrest Induces Mitotic Slippage and APC/CCdh1-dependent Cyclin B1 Degradation Vol. 50 (Experimental & Molecular Medicine, 2018). 4.
Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 361 (15), 1475–1485 (2009).
Google Scholar
Sancar, A. et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).
Google Scholar
McCann, E., O’Sullivan, J. & Marcone, S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Translational Oncol. 14 (1), 100905 (2021).
Google Scholar
Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29 (5), 946–960 (2022).
Google Scholar
Zheng, X. X. et al. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol. 33 (8), 708–727 (2023).
Google Scholar
Fan, M. et al. Cancer stem cell fate determination: mito-nuclear communication. Cell. Communication Signaling: CCS. 21 (1), 159 (2023).
Google Scholar
Fleury, C., Mignotte, B. & Vayssière, J. L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84 (2–3), 131–141 (2002).
Google Scholar
Stine, Z. E. et al. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21 (2), 141–162 (2022).
Google Scholar
Xu, Y. et al. Why all the fuss about oxidative phosphorylation (OXPHOS)? J. Med. Chem. 63 (23), 14276–14307 (2020).
Google Scholar