Almandouh, M., Alrahmawy, M. F., Eisa, M., Elhoseny, M. & Tolba, A. S. Ensemble based high performance deep learning models for fake news detection. Sci. Rep. 14, 26591. https://doi.org/10.1038/s41598-024-26591-5 (2024).
Google Scholar
Praseed, A., Rodrigues, J. & Santhi, T. P. Disinformation detection using graph neural networks: A survey. Artif. Intell. Rev. 57 (2024).
Liu, J., Wu, F., Jin, H., Zhu, X. & Jing, X. Y. Inter-modal fusion network with graph structure preserving for fake news detection. In: Neural Information Processing. Springer, 1–9 https://doi.org/10.1007/978-981-99-8076-5_20 (2024).
Jiang, Y. & Liu, X. Deep learning for fake news detection: A survey. Artif. Intell. 303, 101235. https://doi.org/10.1016/j.artint.2022.101235 (2022).
Google Scholar
Harris, S., Hadi, H. J., Ahmad, N. & Alshara, M. A. Fake news detection revisited: an extensive review of theoretical frameworks, dataset assessments, model constraints, and forward-looking research agendas. Technologies 12, 222. https://doi.org/10.3390/technologies12110222 (2024).
Google Scholar
Wang, B., Feng, Y., Xiong, X. C., Wang, Y. H. & Qiang, B. H. Multi-modal transformer using two-level visual features for fake news detection. Appl. Intell. 53, 10429–10443. https://doi.org/10.1007/s10489-022-04055-5 (2022).
Google Scholar
Lee, D. & Kim, S. Detecting fake news using social media and graph neural networks. J. Comput. Social Sci. 5, 125–137. https://doi.org/10.1007/s42001-021-00110-3 (2022).
Google Scholar
Song, C., Teng, Y., Zhu, Y., Wei, S. & Bin, B. Dynamic graph neural network for fake news detection. Neurocomputing 505, 362–374. https://doi.org/10.1016/j.neucom.2022.07.013 (2022).
Google Scholar
Xu, W., Wang, X. & Chen, Q. Leveraging attention-based networks for fake news detection in social media. IEEE Access. 10, 47115–47127. https://doi.org/10.1109/ACCESS.2022.3181273 (2022).
Google Scholar
Roumeliotis, K. I., Tselikas, N. D. & Nasiopoulos, D. K. Fake news detection and classification: A comparative study of convolutional neural networks, large Language models, and natural Language processing models. Future Internet. 17, 28. https://doi.org/10.3390/fi17010028 (2025).
Google Scholar
Folino, F., Folino, G., Guarascio, M. & Tagarelli, A. Towards data- and compute-efficient fake news detection: an approach combining active learning and pre-trained Language models. SN Comput. Sci. 5, 470. https://doi.org/10.1007/s42979-024-02809-1 (2024).
Google Scholar
Sudhakar, M. & Kaliyamurthie, K. P. Efficient prediction of fake news using novel ensemble technique based on machine learning algorithm. In: Information and Communication Technology for Competitive Strategies. Springer, 1–10 https://doi.org/10.1007/978-981-19-0098-3_1 (2023).
Luo, P. & Xie, Y. Fake news detection via multi-task learning on graph networks. Inf. Sci. 613, 533–550. https://doi.org/10.1016/j.ins.2022.09.040 (2023).
Google Scholar
Xu, X., Sun, C. & Wang, S. Fake news detection via multi-view graph convolutional network. ACM Trans. Inform. Syst. 41, 47. https://doi.org/10.1145/3458986.3458991 (2023).
Google Scholar
Zhang, X. & Zhao, Q. Fake news detection using graph neural networks: A comprehensive survey. Neural Comput. Appl. https://doi.org/10.1007/s00542-023-08257-w (2023).
Google Scholar
Rani, S. & Kumar, M. Multi-modal topic modeling from social media data using deep transfer learning. Appl. Soft Comput. 160, 111706. https://doi.org/10.1016/j.asoc.2024.111706 (2024).
Google Scholar
Kumar, Y., Bhardwaj, P., Shrivastav, S. & Mehta, K. Predicting paediatric brain disorders from MRI images using advanced deep learning techniques. Neuroinformatics 23 (2), 9. https://doi.org/10.1007/s12021-024-09707-0 (2025).
Google Scholar
Modi, N. et al. Physiological signal-based mental stress detection using hybrid deep learning models. Discover Artif. Intell. 5, 166. https://doi.org/10.1007/s44163-025-00412-8 (2025).
Google Scholar
Alzahrani, M. A. & Aljuhani, M. A. Enhancing fake news detection with word embedding: A machine learning and deep learning approach. Computers 13, 239. https://doi.org/10.3390/computers13090239 (2024).
Google Scholar
Zamani, A. S., Hashim, A. H. A., Mohamed, S. S. I. & Alam, M. N. Optimized deep learning techniques to identify rumors and fake news in online social networks. J. Comput. Cogn. Eng. 2, 1–12. https://doi.org/10.47852/bonviewJCCE52023348 (2023).
Google Scholar
Wei, L. & Zhang, T. Fake news detection using deep learning-based fusion of graph convolutional networks and transformer models. Inform. Fusion. 81, 146–159. https://doi.org/10.1016/j.inffus.2022.11.004 (2023).
Google Scholar
Abduljaleel, I. Q. & Ali, I. H. Deep learning and fusion mechanism-based multimodal fake news detection methodologies: A review. Eng. Technol. Appl. Sci. Res. 14, 15665–15675. https://doi.org/10.48084/etasr.7907 (2024).
Google Scholar
Li, H., Liu, L. & Wang, Y. Fake news detection using a transformer-based framework with attention mechanisms. Expert Syst. Appl. 182, 115129. https://doi.org/10.1016/j.eswa.2021.115129 (2022).
Google Scholar
Jing, J., Wu, H., Sun, J., Fang, X. & Zhang, H. Multimodal fake news detection via progressive fusion networks. Inf. Process. Manag. 60, 103120. https://doi.org/10.1016/j.ipm.2022.103120 (2023).
Google Scholar
Dixit, D. K., Bhagat, A. & Dangi, D. An accurate fake news detection approach based on a levy flight honey Badger optimized convolutional neural network model. Concurrency Computation: Pract. Experience. 35, e7382. https://doi.org/10.1002/cpe.7382 (2023).
Google Scholar
Yang, L. & Lee, K. Fake news detection in social media using a hybrid model of deep neural networks. Neural Netw. 145, 202–213. https://doi.org/10.1016/j.neunet.2021.09.003 (2022).
Google Scholar
Singhania, S., Fernandez, N. & Rao, S. 3HAN: A deep neural network for fake news detection. ArXiv Preprint (2023). ArXiv:2306.12014
Kikon, J. M. & Bania, R. K. Towards development of machine learning models for fake news detection and sentiment analysis. In: Proceedings of the NIELIT’s International Conference on Communication, Electronics and Digital Technology (NICEDT 2024). pp. 99–107 https://doi.org/10.1007/978-981-97-3601-0_8 (Springer, Singapore, 2024).
Fu, X., Guo, C. & Yuan, Z. A survey of fake news detection in social media: Methods, trends, and challenges. Computers 12, 80. https://doi.org/10.3390/computers12050080 (2023).
Google Scholar
Patel, R. & Gupta, P. Fake news detection via text and graph-based fusion learning. Comput. Intell. Neurosci. https://doi.org/10.1155/2022/6574754 (2022).
Google Scholar
Truică, C. O., Apostol, E. S., Marogel, M., Paschke, A. & GETAE Graph information enhanced deep neural network ensemble architecture for fake news detection. Expert Syst. Appl. 275, 126984. https://doi.org/10.1016/j.eswa.2025.126984 (2025).
Google Scholar
Zhang, L. & Chen, X. An improved method for fake news detection using attention-based neural networks. Appl. Soft Comput. 115, 108273. https://doi.org/10.1016/j.asoc.2021.108273 (2022).
Google Scholar
Papageorgiou, E., Varlamis, I. & Chronis, C. Harnessing large Language models and deep neural networks for fake news detection. Information 16, 297. https://doi.org/10.3390/info16040297 (2025).
Google Scholar
Jin, W. et al. Veracity-oriented context-aware large Language models–based prompting optimization for fake news detection. Int. J. Intell. Syst. 40, 5920142. https://doi.org/10.1002/int.5920142 (2025).
Google Scholar
Jin, W. et al. -FND: A multi-role fake news detection method based on argument switching-based courtroom debate. J. King Saud Univ. – Comput. Inform. Sci. 37, 33. https://doi.org/10.1016/j.jksuci.2024.101033 (2025).
Google Scholar
Khattar, D., Goud, J. S., Gupta, M. & Mvae, V. V. Multimodal variational autoencoder for fake news detection. In: The World Wide Web Conference, pp. 2915–2921 (2019).
Jin, W. et al. A veracity dissemination consistency-based few-shot fake news detection framework by synergizing adversarial and contrastive self-supervised learning. Sci. Rep. 14, 19470. https://doi.org/10.1038/s41598-024-19470-0 (2024).
Google Scholar
Jin, W. et al. A prompting multi-task learning-based veracity dissemination consistency reasoning augmentation for few-shot fake news detection. Eng. Appl. Artif. Intell. 144, 110122. https://doi.org/10.1016/j.engappai.2025.110122 (2025).
Google Scholar
Abulaish, M., Kamal, A. & Zaki, M. J. A survey of figurative Language and its computational detection in online social networks. ACM Trans. Web. 14, 1–52. https://doi.org/10.1145/3383212 (2020).
Google Scholar
Kamal, A. & Abulaish, M. Contextualized satire detection in short texts using deep learning techniques. J. Web Eng. 23, 27–52 (2024).
Google Scholar
Abulaish, M. & Kamal, A. Self-deprecating sarcasm detection: An amalgamation of rule-based and machine learning approach. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). pp. 415–422 https://doi.org/10.1109/WI.2018.00-25 (IEEE, 2018).
Kamal, A., Anwar, T., Sejwal, V. K., Fazil, M. & BiCapsHate Attention to the linguistic context of hate via bidirectional capsules and hatebase. IEEE Trans. Comput. Social Syst. 11, 1781–1792. https://doi.org/10.1109/TCSS.2022.3228775 (2023).
Google Scholar
Mohankumar, P., Kamal, A., Singh, V. K. & Satish, A. Financial fake news detection via context-aware embedding and sequential representation using cross-joint networks. In: 2023 15th International Conference on Communication Systems & Networks (COMSNETS), pp. 780–784 https://doi.org/10.1109/COMSNETS56262.2023.10041125 (IEEE, 2023).
Kamal, A., Mohankumar, P. & Singh, V. K. Financial misinformation detection via RoBERTa and multi-channel networks. In: International Conference on Pattern Recognition and Machine Intelligence. pp. 646–653 https://doi.org/10.1007/978-3-031-40375-8_53 (Springer, Cham, 2023).
Ilie, V. I., Truică, C. O., Apostol, E. S. & Paschke, A. Context-aware misinformation detection: A benchmark of deep learning architectures using word embeddings. IEEE Access. 9, 162122–162146. https://doi.org/10.1109/ACCESS.2021.3132502 (2021).
Google Scholar
Truică, C. O., Apostol, E. S. & MisRoBÆRTa Transformers versus misinformation. Mathematics 10, 569. https://doi.org/10.3390/math10040569 (2022).
Google Scholar
Truică, C. O. & Apostol, E. S. Fake news detection using sentence Transformers. CEUR Workshop Proc. 3180, paper–61 (2022). https://ceur-ws.org/Vol-3180/paper-61.pdf
Google Scholar
Truică, C. O. & Apostol, E. S. It’s all in the embedding! Fake news detection using document embeddings. Mathematics 11, 508. https://doi.org/10.3390/math11030508 (2023).
Google Scholar
Petrescu, A., Truică, C. O. & Apostol, E. S. Language-based mixture of Transformers for EXIST2024. CEUR Workshop Proc. 3740, paper–108 (2024). https://ceur-ws.org/Vol-3740/paper-108.pdf
Google Scholar
Truică, C. O., Apostol, E. S. & Karras, P. Deep neural network ensemble architecture for social and textual context-aware fake news detection. Knowl. Based Syst. 294, 111715. https://doi.org/10.1016/j.knosys.2024.111715 (2024).
Google Scholar
E Almandouh M, Alrahmawy MF, Eisa M, Elhoseny M, Tolba AS. Ensemble based highperformance deep learning models for fake news detection. Scientific Reports 14 (1), 26591 (2024).
Ghosh, A. et al. Proactive network immunization for misinformation control. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), pp. xxx–xxx https://doi.org/10.1145/3459637.3482481 (2021).
Truică, C. O., Apostol, E. S., Nicolescu, R. C. & Karras, P. M. C. W. D. S. T. A minimum-cost weighted directed spanning tree algorithm for real-time fake news mitigation in social media. IEEE Access. 11, 125861–125873. https://doi.org/10.1109/ACCESS.2023.3331220 (2023).
Google Scholar
Apostol, E. S., Coban, Ö. & Truică, C. O. CONTAIN: A community-based algorithm for network immunization. Eng. Sci. Technol. Int. J. 55, 101728. https://doi.org/10.1016/j.jestch.2024.101728 (2024).
Google Scholar
Apostol, E. S., Truică, C. O., Paschke, A. & ContCommRTD A distributed content-based misinformation-aware community detection system for real-time disaster reporting. IEEE Trans. Knowl. Data Eng. 36, 5811–5822. https://doi.org/10.1109/TKDE.2024.3417232 (2024).
Google Scholar
Truică, C. O., Constantinescu, A. T. & Apostol, E. S. StopHC: A harmful content detection and mitigation architecture for social media platforms. In: Proceedings of the IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. xxx–xxx https://doi.org/10.1109/ICCP63557.2024.10793051 (2024).
Almeida, F. et al. Virality detection in social media. In: Proceedings of the International Conference on Extending Database Technology (EDBT), pp. xxx–xxx https://doi.org/10.5441/002/edbt.2021.69 (2021).