Liu, Y., James, J. Q., Kang, J., Niyato, D. & Zhang, S. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet Things J. 7 (8), 7751–7763. https://doi.org/10.1109/JIOT.2020.2974820 (2020).
Google Scholar
Peng, H. et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578, 401–416. https://doi.org/10.1016/j.ins.2021.06.053 (2021).
Google Scholar
Djenouri, Y., Belhadi, A., Srivastava, G. & Lin, J. C. W. Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting.Future Generation Comput. Syst. 139: 100–108. https://doi.org/10.1016/j.future.2022.09.032. (2023).
Williams, B. M. & Hoel, L. A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation Engineering 129(6), 664–672. https://doi.org/10.1061/(ASCE)0733-947X (2003).
Zhang, Q., Li, C., Su, F. & Li, Y. Spatiotemporal residual graph attention network for traffic flow forecasting. IEEE Internet Things J. 10 (13), 11518–11532. https://doi.org/10.1109/JIOT.2023.3248874 (2023).
Google Scholar
Yu, B., Yin, H. & Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.Proceedings of the 27th International Joint Conference on Artificial Intelligence. 3634–3640. https://doi.org/10.24963/ijcai.2018/505 (2018).
Li, Y., Yu, R., Shahabi, C. & Liu, Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. InternationalConference on Learning Representations (ICLR 2018). Vancouver, Canada. https://doi.org/10.48550/arXiv.1707.01926 (2018).
Cai, L., Janowicz., K., Mai., G., Yan., B. & Zhu, R. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS. 24 (3), 736–755. https://doi.org/10.1111/tgis.12644 (2020).
Google Scholar
Liu, H. et al. STAEformer: Spatio-Temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting. Proc. 32nd ACM Int. Conf. Inform. Knowl. Manage. (CIKM). 4125-4129 https://doi.org/10.48550/arXiv.2308.10425 (2023).
Kazemi, S. M. et al. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res. 21 (70), 1–73 (2020).
Google Scholar
Zhao, L. et al. T-GCN: A Temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21 (9), 3848–3858. https://doi.org/10.1109/TITS.2019 (2019).
Google Scholar
Peng, H. et al. Spatial Temporal incidence dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 521, 277–290. https://doi.org/10.1016/j.ins.2020.02.006 (2020).
Google Scholar
Vaswani, A. et al. Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017).
Google Scholar
Cai, L., Janowicz, K., Mai, G., Yan, B. & Zhu, R. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS. 24 (3), 736–755. https://doi.org/10.1111/tgis.12607 (2020).
Google Scholar
Zheng, C. et al. Spatio-temporal joint graph convolutional networks for traffic forecasting. IEEE Trans. Knowl. Data Eng. 36 (1), 372–385. https://doi.org/10.1109/TKDE.2022 (2023).
Google Scholar
Han, L., Du, B., Sun, L., Fu, Y. & Lv, Y. and H. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 547–555 https://doi.org/10.1145/3447548.3467118 (2021).
Kong, J., Fan, X., Zuo, M., Deveci, M., Zhong, K. & X., and ADCT-Net: adaptive traffic forecasting neural network via dual-graphic cross-fused transformer. Inform. Fusion. 103, 102122. https://doi.org/10.1016/j.inffus.2023.102122 (2024).
Google Scholar
Wu, C. H., Ho, J. M. & Lee, D. T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5 (4), 276–281. https://doi.org/10.1109/TITS.2004.837813 (2004).
Google Scholar
Liu, A. & Zhang. Y Spatial–Temporal dynamic graph convolutional network with interactive learning for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25 (7), 7645–7660. https://doi.org/10.1109/TITS.2024.3362145 (2024).
Google Scholar
Wu, Y., Tan, H., Qin, L., Ran, B. & Jiang, Z. A hybrid deep learning based traffic flow prediction method and its Understanding. Transp. Res. Part. C: Emerg. Technol. 90, 166–180. https://doi.org/10.1016/j.trc.2018.03.001 (2018).
Google Scholar
Li, M. & Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35(5), 4189–4196 https://doi.org/10.1609/aaai.v35i5.16550 (2021).
Fang, Z., Long, Q. & Song, G. and K. Spatial-temporal graph ODE networks for traffic flow forecasting. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining: 364–373. (2021). https://doi.org/10.1145/3447548.3467141
Xu, Y. et al. Generic dynamic graph convolutional network for traffic flow forecasting. Inform. Fusion. 100, 101946. https://doi.org/10.1016/j. inffus.2023.101946 (2023).
Google Scholar
Fang, Y., Zhao, F., Qin, Y., Luo, H. & Wang, C. Learning all dynamics: traffic forecasting via locality-aware spatio-temporal joint transformer. IEEE Trans. Intell. Transp. Syst. 23 (12), 23433–23446. https://doi.org/10.1109/TITS.2022 (2022).
Google Scholar
Lin, L., Li, W., Bi, H. & Qin, L. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms. IEEE Intell. Transp. Syst. Mag. 14 (2), 197–208. https://doi.org/10.1109/MITS.2021.3058034 (2021).
Google Scholar
Guo, S., Lin, Y., Wan, H., Cong, G. & L., and Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34 (11), 5415–5428. https://doi.org/10.1109/TKDE.2021.3081562 (2021).
Google Scholar
Zhu, J. et al. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 23 (9), 15055–15065. https://doi.org/10.1109/TITS.2021.3137177 (2022).
Google Scholar
Kong, X., Wang, K., Hou, M., Karmakar, F., Li, J. & G., and Exploring human mobility for multi-pattern passenger prediction: A graph learning framework. IEEE Trans. Intell. Transp. Syst. 23 (9), 16148–16160. https://doi.org/10.1109/TITS.2021 (2022).
Google Scholar
Chen, Y., Segovia, I. & Gel, Y. R. Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting. Proceedings of the 38th International Conference on Machine Learning 139: 1684–1694. (2021).
Lee, K. & Rhee, W. DDP-GCN: Multi-graph convolutional network for Spatiotemporal traffic forecasting. Transp. Res. Part. C: Emerg. Technol. 134, 103466. https://doi.org/10.1016/j.trc.2021.103466 (2022).
Google Scholar
Shin, Y. & Yoon, Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 23 (3), 2082–2092. https://doi.org/10.1109/TITS.2021 (2022).
Google Scholar
Bai, L., Yao, L., Li, C., Wang, X. & Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020).
Google Scholar
Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. Graph WaveNet for deep spatial-temporal graph modeling. Proceedings of the 28th International Joint Conference on Artificial Intelligence: 1907–1913. (2019). https://doi.org/10.24963/ijcai.2019/264
Wang, W. D. P. K. Spatial–Temporal graph attention gated recurrent transformer network for traffic flow forecasting. IEEE Internet Things J. 11 (8), 14267–14281. https://doi.org/10.1109/JIOT.2023.3340182 (2024).
Google Scholar
Shin, Y. & Yoon. Y PGCN: progressive graph convolutional networks for Spatial-Temporal traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25 (7), 7633–7644. https://doi.org/10.1109/TITS.2024.3349565 (2024).
Google Scholar
Fang, Y. et al. Efficient large-scale traffic forecasting with transformers: A Spatial data management perspective. KDD ‘25: Proc. 31st ACM SIGKDD Conf. Knowl. Discovery Data Min. 307-317 https://doi.org/10.1145/3690624.3709177 (2024).
Fang, Y. et al. Unraveling spatio-temporal foundation models via the pipeline lens: A comprehensive review. Inf. Fusion. 115, 102346. https://doi.org/10.48550/arXiv.2506.01364 (2025).
Google Scholar
Yang., S., Wu., Q., Wang., Y. & Lin, T. SSGCRTN: A space-specific graph convolutional recurrent transformer network for traffic prediction. Appl. Intell. 54 (22), 11978–11994. https://doi.org/10.1007/s10489-024-05815-1 (2024).
Google Scholar
Yang., S., Huang., Z., Wu., Q. & Zhuo, Z. MSTDFGRN: A multi-view spatio-temporal dynamic fusion graph recurrent network for traffic flow prediction. Comput. Electr. Eng. 123, 110046. https://doi.org/10.1016/j.compeleceng.2024.110046 (2025).
Google Scholar
Yang, S., Wu, Q., Li, Z. & Wang, K. PSTCGCN: principal spatio-temporal causal graph convolutional network for traffic flow prediction. Neural Comput. Appl. 1-14, https://doi.org/10.1007/s00521-024-10769-6 (2024).
Yang., S., Wu., Q., Li., M. & Sun, Y. Temporal identity interaction dynamic graph convolutional network for traffic forecasting. IEEE Internet Things J. 12 (11), 15057–15072. https://doi.org/10.1109/JIOT.2025.3503328 (2025).
Google Scholar
Yang., S. & Wu, Q. SDSINet: A Spatiotemporal dual-scale interaction network for traffic prediction. Appl. Soft Comput. 112892. https://doi.org/10.1016/j.asoc.2025.112892 (2025).
Google Scholar
Yang., S. & Wu, Q. MTEGCRN: Multi-scale Temporal enhanced graph convolutional recurrent network for traffic prediction. Neurocomputing 131064 https://doi.org/10.1016/j.neucom.2025.131064 (2025).
Yang., S., Wu., Q., Huang., Z. & Zhuo, Z. General Decoupled Graph Convolutional Recurrent Network for Traffic Prediction. IEEE Sensors J. (2025).
Yang., S., Wu., Q. & Li, M. Decoupled Multi-Spatio-Temporal Fusion Graph Convolutional Recurrent Network for Traffic Prediction. Eng. Appl. Artif. Intell. 163: 112956. https://doi.org/10.1016/j.engappai.2025.112956. (2025).
Guo, S., Lin, Y., Feng, N., Song, C. & Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 33(01): 922–929. (2019). https://doi.org/10.1609/aaai.v33i01. 3301922.
Lan, S., Huang, M. Y., Wang, W., Yang, W. & Li, H. P. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. in: International Conference on Machine Learning, PMLR, 11906–11917. (2022).
Li, J. D. S. J. W. R. & Huang, Y. Y., Yang. Y.-B. Trafformer: unify time and space in traffic prediction. in: Proceedings of the AAAI Conference on Artificial Intelligence, 37(7): 8114–8122. (2023).
Shao, Z., Zhang, Z., Wang, F., Wei, W. & Xu, Y. Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. Proceedings of the 31st ACM International Conference on Information & Knowledge Management: 4454–4458. (2022). https://doi.org/10.1145/3511808.3557410
Cui, Z., Henrickson, K., Ke, R. & Wang, Y. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 21 (11), 4883–4894. https://doi.org/10.1109/TITS.2019.2950416 (2020).
Google Scholar
Pan, Z. et al. Spatio-temporal meta learning for urban traffic prediction. IEEE Trans. Knowl. Data Eng. 34 (3), 1462–1476. https://doi.org/10.1109/TKDE.2020.2989138 (2020).
Google Scholar
Chen, C., Liu, Y., Chen, L. & Zhang, C. Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting. IEEE Trans. Neural Networks Learn. Syst. 34 (10), 6913–6925. https://doi.org/10.1109/TNNLS.2022.3156673 (2022).
Google Scholar
Al-Huthaif, R., Li, T., Al-Huda, Z. & Li, C. FedAGAT: Real-time traffic flow prediction based on federated community and adaptive graph attention network. Inf. Sci. 667 (2024), 120482. https://doi.org/10.1016/j.ins.2024.120482 (2024).
Google Scholar
Lai, Q. & Chen, P. LEISN: A long explicit-implicit spatio-temporal network for traffic flow forecasting. Expert Syst. Appl. 245 (2024), 123139. https://doi.org/10.1016/j.eswa.2024.123139 (2024).
Google Scholar
Wang., R., Xi., L., Ye., J., Zhang., F. & Xu, X. Y. L. Adaptive Spatio-Temporal relation based transformer for traffic flow prediction. IEEE Trans. Veh. Technol. 74 (2), 2220–2230. https://doi.org/10.1109/TVT.2024.3390997 (2025).
Google Scholar
Fan., J., Weng., W., Chen., Q., Wu., H. & Wu, J. Pdg2seq: periodic dynamic graph to sequence model for traffic flow prediction. Neural Netw. 183, 106941. https://doi.org/10.1016/j.neunet.2024.106941 (2025).
Google Scholar
Wu, B. et al. DT-CTFP: 6 g-enabled digital twin collaborative traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 26 (10), 18129–18144. https://doi.org/10.1109/TITS.2025.3582356 (2025).
Google Scholar