Category: 3. Business

  • Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, et al. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun. 2020;11(1):988. https://doi.org/10.1038/s41467-020-14746-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo W, Guo X, Xu L, Shao L, Zhu B, Liu H, et al. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep. Animal. 2022;16(7):100576. https://doi.org/10.1016/j.animal.2022.100576.

    Article 
    PubMed 

    Google Scholar 

  • Zhang H, Wu J, Zhao X, Yan P, Yang R, Yan J, et al. Improving aerobic stability and methane production of maize stover silage with lactic acid bacteria inoculants: focus on pentose-fermentation. IND CROP PROD. 2023;201:116861. https://doi.org/10.1016/j.indcrop.2023.116861.

    Article 

    Google Scholar 

  • Tahir M, Wang T, Zhang J, Xia T, Deng X, Cao X, Zhong J. Compound lactic acid bacteria enhance the aerobic stability of Sesbania Cannabina and maize mixed silage. BMC Microbiol. 2025;25(1):68. https://doi.org/10.1186/s12866-025-03781-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xin Y, Chen C, Zhong Y, Bu X, Huang S, Tahir M, Du Z, Liu W, Yang W, Li J, Wu Y, Zhang Z, Lian J, Xiao Q, Yan Y. Effect of storage time on the silage quality and microbial community of mixed maize and Faba bean in the Qinghai-Tibet plateau. Front Microbiol. 2023;13:1090401. https://doi.org/10.3389/fmicb.2023.1161337.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao C, Na B, Tang X, Zhao M, Zhang C, Chen S, et al. Contribution of the bacterial community of poorly fermented oat silage to biogas emissions on the Qinghai Tibetan plateau. Sci Total Environ. 2023;897:165336. https://doi.org/10.1016/j.scitotenv.2023.165336.

    Article 
    PubMed 

    Google Scholar 

  • Li F, Jia M, Chen H, Chen M, Su R, Usman S, Ding Z, Hao L, Franco M, Guo X. Responses of microbial community composition and cazymes encoding gene enrichment in ensiled Elymus nutans to altitudinal gradients in alpine region. Appl Environ Microbiol. 2024;90(10):e0098624. https://doi.org/10.1128/aem.00986-24.

    Article 
    PubMed 

    Google Scholar 

  • Jatkauskas J, Vrotniakiene V, Eisner I, Witt KL, do Amaral RC. Comparison of the chemical and microbial composition and aerobic stability of high-moisture barley grain ensiled with either chemical or viable lactic acid bacteria application. Fermentation. 2024;10:62. https://doi.org/10.3390/fermentation10010062.

    Article 

    Google Scholar 

  • Chen L, Bai S, You M, Xiao B, Li P, Cai Y. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage. Anim Feed Sci Technol. 2020;269:114669. https://doi.org/10.1016/j.anifeedsci.2020.114669.

    Article 

    Google Scholar 

  • Wang X, Han X, Wang H, Jing X, Liu C, Zhou Y. Studying progress of Lactobacillus’s responses in a variety of stress. Sci Technol Food Ind. 2015;6:365–9.

    Google Scholar 

  • Wang S, Dong Z, Li J, Chen L, Shao T. Pediococcus acidilactici strains as silage inoculants for improving the fermentation quality, nutritive value and in vitro ruminal digestibility in different forages. J Appl Microbiol. 2018;126:1–10. https://doi.org/10.1111/jam.14146.

    Article 

    Google Scholar 

  • Liu H, Zeng T, Zhang Y, Wen X, Liu H, Zhang L, Xiao O, Li X, Yan Y. Screening and identification of low temperature resistant lactic acid bacteria and its effect on fermentation quality of oat silage. Pratacultural Sci. 2025;42(3):669–78. https://doi.org/10.11829/j.issn.1001-0629.2023-0688.

    Article 

    Google Scholar 

  • Chen C, Xin Y, Li X, Ni H, Zeng T, Du Z, et al. Effects of acremonium cellulase and heat-resistant lactic acid bacteria on lignocellulose degradation, fermentation quality, and microbial community structure of hybrid elephant grass silage in humid and hot areas. Front Microbiol. 2022;13:1066753. https://doi.org/10.3389/fmicb.2022.1066753.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci. 1980;63:64–75. https://doi.org/10.3168/jds.s0022-0302(80)82888-8.

    Article 
    PubMed 

    Google Scholar 

  • Murphy RP. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J Sci Food Agric. 1958;9:714–7. https://doi.org/10.1029/2001JB000884.

    Article 

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–97. https://doi.org/10.3168/jds.s0022-0302(91)78551-2.

    Article 
    PubMed 

    Google Scholar 

  • AOAC. Official methods of analysis. J Pharm Sci. 1975;60:414–5. https://doi.org/10.1002/jps.2600600253.

    Article 

    Google Scholar 

  • Zhu L, Zhao M, Yan Y, Sun P, Yan X, Liu M, Na R, Jia Y, Cha S, Ge G. Characteristics of isolated lactic acid bacteria at low temperature and their effects on the silage quality. Microbiol Spectr. 2025;6:e0319424. https://doi.org/10.1128/spectrum.03194-24.

    Article 

    Google Scholar 

  • Ren H, Shi R, Yang D, Tian H, Wang L, Ling Z, et al. Innovative strategy to enhance bioconversion of sweet sorghum Bagasse (SSB) by the combination of bio-fortified ensiling and dilute alkali pretreatment. Ind Crop Prod. 2024;211:118208. https://doi.org/10.1016/j.indcrop.2024.118208.

    Article 

    Google Scholar 

  • Gaspar P, Neves AR, Shearman CA, Gasson MJ, Baptista AM, Turner DL, et al. The lactate dehydrogenases encoded by the Ldh and LdhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties – comparative modeling to probe the molecular basis. FEBS J. 2007;274(22):5924–36. https://doi.org/10.1111/j.1742-4658.2007.06115.x.

    Article 
    PubMed 

    Google Scholar 

  • Yang Y, Bao C, Li K, Pan Y, Wang X, Fang G, Chen H, Zhang S, Chen G, Gang W. Identification, low temperature growth characteristics and tolerance mechanism of low temperature-resistant strain. China Brew. 2022;41(5):47–51. https://doi.org/10.11882/j.issn.0254-5071.2022.05.009.

    Article 

    Google Scholar 

  • Bernardes T, Daniel J, Adesogan T, McAllister A, Nussio D. Silage review: unique challenges of silages made in hot and cold regions. J Dairy Sci. 2018;101:4001–19. https://doi.org/10.3168/jds.2017-13703.

    Article 
    PubMed 

    Google Scholar 

  • Liu X, Yu X, He J, Guo J, Wang P, Wang Z. Interactions between nine probiotics and mechanisms of cooperative symbiosis. Food Ferment Ind. 2019;45(13):65–70. https://doi.org/10.13995/j.cnki.11-1802/ts.019868.

    Article 

    Google Scholar 

  • Kleinschmit DH Jr. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J Dairy Sci. 2006;89(10):4005–13. https://doi.org/10.3168/jds.S0022-0302(06)72444-4.

    Article 
    PubMed 

    Google Scholar 

  • Yin X, Zhao J, Wang S, Dong Z, Li J, Shao T. The effects of epiphytic microbiota and chemical composition of Italian ryegrass harvested at different growth stages on silage fermentation. J Sci Food Agric. 2023;103(3):1385–93. https://doi.org/10.1002/jsfa.12232.

    Article 
    PubMed 

    Google Scholar 

  • You L, Bao W, Yao C, Zhao F, Jin H, Huang W, Li B, Kwok L, Liu W. Changes in chemical composition, structural and functional Microbiome during alfalfa (Medicago sativa) ensilage with Lactobacillus plantarum PS-8. Anim Nutr. 2022;24:100–9. https://doi.org/10.1016/j.aninu.2021.12.004.

    Article 

    Google Scholar 

  • Yang S, Xing Y, Gao J, Jin R, Lin R, Weng W, et al. Lacticaseibacillus paracasei fermentation broth identified peptide, Y2Fr, and its antibacterial activity on vibrio parahaemolyticus. Microb Pathog. 2023;182:106260. https://doi.org/10.1016/j.micpath.2023.106260.

    Article 
    PubMed 

    Google Scholar 

  • Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, et al. Ensiling as pretreatment of rice straw: the effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour Technol. 2018;266:158–65. https://doi.org/10.1016/j.biortech.2018.06.058.

    Article 
    PubMed 

    Google Scholar 

  • Cheng X, Huang L, Li K. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World J Microbiol Biotechnol. 2019;35(5):68. https://doi.org/10.1007/s11274-019-2645-6.

    Article 
    PubMed 

    Google Scholar 

  • Li F, Ding Z, Ke W, Xu D, Zhang P, Bai J, et al. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of maize stalk silage at two different temperatures: ensiling characteristics, carbohydrates composition, and enzymatic saccharification. Bioresour Technol. 2019;282:211–21. https://doi.org/10.1016/j.biortech.2019.03.022.

    Article 
    PubMed 

    Google Scholar 

  • Gong M, Wang Y, Bao D, Jiang S, Chen H, Shang J, Wang X, Hnin Y, Zou G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling. Bioresour Technol. 2023;376:128888. https://doi.org/10.1016/j.biortech.2023.128888.

    Article 
    PubMed 

    Google Scholar 

  • Santos MAB, Morais F, Mandelli EA, Lima RY, Miyamoto PMR, Higasl EAA, Araujo DAA, Paixao JMJ, Motta ML, Streit RSA, Morao LG, Silva CBC, Wolf CRF, Terrasan NR, Bulka JA, Diogo FJ, Fuzita FM, Colombar CR, Santos PT, Rodrigues DB, Silva SG, Bernardes N, Terrapon V, Lombard AJC, Henrissat B, Bissaro MJGB, Persinoti GF, Berrin MT. A metagenomic ‘dark matter’ enzyme catalyses oxidative cellulose conversion. Nature. 2025;639:1076–83. https://doi.org/10.1038/s41586-024-08553-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weissbach F, Kuhla S, Schmidt L. Estimation of the metabolizable energy in forages by a cellulase-method. Proc Soc Nutr Physiol. 1996;5:11–25. https://doi.org/10.2134/1994.foragequality.c16.

    Article 

    Google Scholar 

  • Zong C, Xiao Y, Shao T, Chiou AJ, Wu A, Huang Z, Chen C, Jiang W, Zhu J, Dong Z, Liu Q, Li M. Alfalfa as a vegetable source of β-carotene: the change mechanism of β-carotene during fermentation. Food Res Int. 2023;172:113104. https://doi.org/10.1016/j.foodres.2023.113104.

    Article 
    PubMed 

    Google Scholar 

  • Ferrero F, Tabacco E, Piano S, Casale M, Borreani G. Temperature during conservation in laboratory silos affects fermentation profile and aerobic stability of corn silage treated with Lactobacillus buchneri, Lactobacillus hilgardii, and their combination. J Dairy Sci. 2021;104(2):1696–713. https://doi.org/10.3168/jds.2020-18733.

    Article 
    PubMed 

    Google Scholar 

  • Bai J, Ding Z, Su R, Wang M, Cheng M, Xie D, Guo X. Storage temperature is more effective than lactic acid bacteria inoculations in manipulating fermentation and bacterial community diversity, co-occurrence and functionality of the whole-plant maize silage. Microbiol Spectr. 2022;10:e00101–22. https://doi.org/10.1128/spectrum.00101-22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li M, Fan X, Cheng Q, Chen Y, Long J, Lei Y, et al. Effect of Amomum villosum essential oil as an additive on the chemical composition, fermentation quality, and bacterial community of paper mulberry silage. Front Microbiol. 2022;13:951958. https://doi.org/10.3389/fmicb.2022.951958.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogunade IM, Jiang Y, Cervantes AAP, Kim DH, Oliveira AS, Vyas D, Weinberg ZG, Jeong KC, Adesogan AT. Bacterial diversity and composition of alfalfa silage as analyzed by illumina miseq sequencing: effects of Escherichia coli O157:H7 and silage additives. J Dairy Sci. 2017;101:2048–59. https://doi.org/10.3168/jds.2017-12876.

    Article 
    PubMed 

    Google Scholar 

  • Zong C, Wu Q, Wu A, Chen S, Dong D, Zhao J, et al. Exploring the diversity mechanism of fatty acids and the loss mechanisms of polyunsaturated fatty acids and fat-soluble vitamins in alfalfa silage using different additives. Anim Feed Sci Technol. 2021;280:115044. https://doi.org/10.1016/j.anifeedsci.2021.115044.

    Article 

    Google Scholar 

  • Li L, Zhang H, Meng D, Yin H. Transcriptomics of Lactobacillus paracasei: metabolism patterns and cellular responses under high-density culture conditions. Front Bioeng Biotechnol. 2023;11:1274020. https://doi.org/10.3389/fbioe.2023.1274020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen S, Choi O, Park SH, Kim CG, Park CS. Root colonizing and biocontrol competency of Serratia plymuthica A21-4 against phytophthora blight of pepper. Plant Pathol J. 2005;21:64–7. https://doi.org/10.5423/PPJ.2005.21.1.064.

    Article 

    Google Scholar 

  • Dai J, Han R, Xu Y, Li N, Wang J, Dan W. Recent progress of antibacterial natural products: future antibiotics candidates. Bioorg Chem. 2020;101:103922. https://doi.org/10.3390/fermentation8040158.

    Article 
    PubMed 

    Google Scholar 

  • Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals xylella as a variant lineage of plant-associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics. 2021;113:3989–4003. https://doi.org/10.1016/j.ygeno.2021.09.021.

    Article 
    PubMed 

    Google Scholar 

  • Zeng T, Li X, Guan H, Yang W, Yan Y. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour Technol. 2020;123655. https://doi.org/10.1016/j.biortech.2020.123655.

    Article 
    PubMed 

    Google Scholar 

  • Du Z, Lin Y, Sun L, Yang F, Cai Y. Microbial community structure, co-occurrence network and fermentation characteristics of Woody plant silage. J Sci Food Agric. 2021;102:193–1204. https://doi.org/10.1002/jsfa.11457.

    Article 

    Google Scholar 

  • Kleerebezem M, Bachmann H, van PeltKleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev. 2020;24:804–20. https://doi.org/10.1093/femsre/fuaa033.

    Article 

    Google Scholar 

  • Zhou J, Huo T, Sun J, Feng Y, Pan J, Zhao Y, et al. Response of amino acid metabolism to decreased temperatures in anammox consortia: strong, efficient and flexible. Bioresour Technol. 2022;352:127099. https://doi.org/10.1016/j.biortech.2022.127099.

    Article 
    PubMed 

    Google Scholar 

  • Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566–71. https://doi.org/10.1038/s42255-020-0243-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDonald P, Henderson AR, Heron SJJW. The biochemistry of silage. 2nd ed. Chalcombe; 1992. p. 145–50. https://doi.org/10.1017/S0014479700023115.

    Book 

    Google Scholar 

Continue Reading

  • Eviden and AMD to Power Europe’s New Exascale Supercomputer, the First Based in France

    Eviden and AMD to Power Europe’s New Exascale Supercomputer, the First Based in France

    More than a single supercomputer, Alice Recoque will expand Europe’s AI and research capabilities while ensuring energy efficiency and sovereignty

    Paris, France – November 18, 2025

    Eviden, the Atos Group product brand leading in advanced computing, and AMD (NASDAQ: AMD) announced their selection to build Alice Recoque, a next-generation supercomputer to support the need for scientific computing (HPC) and artificial intelligence (AI), serving as an AI Factory. Alice Recoque will be France’s first and Europe’s second Exascale supercomputer, a machine to expand Europe’s AI and research capabilities while ensuring energy efficiency and sovereignty.

    For more information, please click here.

    Continue Reading

  • Stock market today: Live updates

    Stock market today: Live updates

    Traders work on the floor of the New York Stock Exchange.

    NYSE

    Stock futures fell on Tuesday, as continued weakness in tech ahead of Nvidia’s major earnings report this week put pressure on the broader market.

    Futures tied to the Dow Jones Industrial Average lost 185 points, or 0.4%. S&P 500 futures shed 0.2%, while Nasdaq-100 futures were dipped 0.2%.

    Nvidia fell about 0.9% in the premarket, while Palantir Technologies dipped 1.2%. Amazon and Microsoft were also down more than 1%.

    Also putting pressure on futures was a 1.5% decline in Home Depot shares. The home improvement pulled back after reporting an earnings miss and cutting its full-year outlook.

    The three major U.S. indexes closed in the red in the previous trading session. The 30-stock Dow Jones Industrial Average plunged more than 550 points, or 1.2%, while the S&P 500 and Nasdaq Composite each lost around 0.9%.

    Nvidia notably declined about 2% ahead of the chipmaker’s third-quarter results due after Wednesday’s close. The company, which is reporting toward the end of a strong earnings season, has been at the center of a debate about the strength of the artificial intelligence-powered market rally this year. Concerns have grown about weak market breadth, pricey tech valuations and the soundness of AI fundamentals due to a boom in Big Tech debt offerings and the pace of AI chip depreciation.

    The tech-heavy Nasdaq is on pace to snap its seven-month win streak, while the S&P 500 is down 2.5% in November after rallying for six months in a row.

    “The market narrative has certainly shifted dramatically over the past few weeks, as the market’s reaction function with respect to AI has taken a sharp left turn from rewarding ever-growing capex spend to rapidly growing skepticism of further investment and future returns,” said Garrett Melson, portfolio strategist at Natixis Investment Managers Solutions. “Pair that with crowded positioning across real money and systematic accounts and you’ve got all the ingredients for a sharp de-risking and an accompanying narrative reset.”

    To be sure, Melson remains bullish that a cooling labor market and an overall improving inflation picture will power a year-end rally. “Despite the fears, the AI cycle remains alive and well, something we expect NVDA will confirm on Wednesday. That certainly isn’t a bearish backdrop,” he said.

    Aside from Nvidia’s report, investors this week will monitor data points that can inform the trajectory of upcoming interest rate decisions, which have scaled back in recent weeks. Fed funds futures traders are pricing in roughly 40% chance of a cut, significantly lower than the more than 90% chance priced in a month ago, according to the CME FedWatch tool. The Federal Reserve’s October meeting minutes and September nonfarm payrolls release, which will be the first piece of economic data released following the U.S. government shutdown, are on deck for Wednesday and Thursday releases, respectively.

    Continue Reading

  • tRF-His-GTG-1 promotes Salmonella survival through modulation of lipid metabolism and immune signaling | Cell Communication and Signaling

    tRF-His-GTG-1 promotes Salmonella survival through modulation of lipid metabolism and immune signaling | Cell Communication and Signaling

    Subjects

    In total, 25 patients with SLE who fulfilled the 1997 revised criteria of the American College of Rheumatology [17] and the 2012 Systemic Lupus International Collaborating Clinics classification criteria [18] were included. Among them, five had NTS bacteremia. Twenty healthy volunteers without rheumatic disease served as non-SLE controls, and an additional five non-SLE patients with NTS bacteremia were enrolled. The demographic and clinical characteristics of patients with SLE and control subjects are summarized in Table 1. Sex was not considered a biological variable. The Institutional Review Board of Taichung Veterans General Hospital approved this study (CF21176A), and written informed consent was obtained from all participants in accordance with the Declaration of Helsinki.

    Table 1 Demographics and clinical characteristics of systemic lupus erythematosus (SLE) patients and non-SLE control subjects with or without non-typhoidal Salmonella (NTS) bacteremia

    Human PBMC isolation

    PBMCs were isolated immediately after venous blood collection using Ficoll-Paque PLUS (GE Healthcare Biosciences AB, Sweden) density gradient centrifugation.

    Salmonella infection

    Salmonella enterica serovar Typhimurium strain ATCC14028 was cultured on LB agar plates at 37 °C in an incubator with 5% CO₂. Human PBMCs were infected with strain ATCC14028 at a multiplicity of infection (MOI) of 10. At 3 h post-infection, the cells were incubated with medium containing 50 µg/mL gentamicin for 1 h to eliminate extracellular bacteria, washed three times with phosphate-buffered saline (PBS), and then maintained in antibiotic-free medium. Bacterial growth was assessed by colony-forming unit (CFU) assays. At the indicated time points post-infection, cells were lysed in sterile PBS containing 0.1% Triton X-100 to release intracellular bacteria. The lysates were serially diluted, plated on LB agar plates, and incubated at 37 °C for 18–24 h to determine CFU counts.

    EV isolation

    Samples were centrifuged at 350 × g for 10 min at 4 °C to remove cell debris. For EV characterization and functional assays, 2.5 mL of each sample was diluted with 7.5 mL of PBS and concentrated using Amicon Ultra-0.5 centrifugal filter units (Millipore, 100 K cutoff) at 3000 × g for 30 min at 4 °C. The retentate (100 µL) was diluted with 1.4 mL of PBS and centrifuged at 10,000 × g for 30 min at 4 °C. The resulting pellets were resuspended in 1.5 mL of PBS and ultracentrifuged at 120,000 × g for 90 min at 4 °C. Finally, the pellets were resuspended in 50 µL of PBS and stored at − 80 °C [16].

    IC isolation

    ICs were isolated from the sera of patients with clinically active SLE, defined as those with an SLE Disease Activity Index of >6, by polyethylene glycol (PEG) precipitation as previously described [19]. Briefly, serum samples were mixed with an equal volume of ice-cold 6% (wt/vol) PEG 6000 (Sigma-Aldrich, USA) to achieve a final concentration of 3%, incubated for 60 min at 4 °C, and centrifuged at 2,000 × g for 20 min. The resulting precipitates were washed three times with sterile PBS and resuspended to the original serum volume in PBS. Anti-DNA enzyme-linked immunosorbent assay (ELISA) (CUSABIO, USA) was performed on both the PEG pellets and corresponding supernatants to confirm that the precipitated material contained DNA-binding ICs. More than 75% of total anti-DNA reactivity was recovered in the PEG pellet fraction of SLE sera, whereas pellets from healthy controls showed undetectable signal. The concentrations of PEG-precipitated ICs were determined using a circulating IC C1q ELISA (BioVendor, Czech Republic) and expressed as aggregated human IgG equivalents (µg Eq/mL).

    ICs from three different patients with active SLE were quantified and diluted in PBS to a final concentration of 50 µg Eq/mL. For stimulation assays, 40 µL of the IC suspension was added to PBMC cultures and incubated for 24 h, unless otherwise indicated. Each experiment used ICs derived from one patient with SLE and was performed in triplicate; the full set of experiments was independently repeated with ICs from three different patients to confirm reproducibility and minimize donor-specific bias.

    IC-primed pEV Preparation

    Human platelets were isolated from peripheral blood by centrifugation at 230 × g for 15 min at 25 °C, followed by centrifugation at 1,000 × g for 10 min. The platelet pellets were resuspended in Tyrode’s buffer (Sigma-Aldrich, USA) containing one-sixth volume of acid citrate dextrose (Sigma-Aldrich, USA) and 1 µM prostaglandin I₂ (Sigma-Aldrich, USA), then centrifuged again at 1,000 × g for 10 min at 25 °C. The pellets were resuspended in Tyrode’s buffer containing 1 µM prostaglandin I₂ and 0.04 U/mL apyrase (Sigma-Aldrich, USA) and gently agitated on a shaker. Before stimulation, the platelets (4 × 10⁷ per tube) were washed once by centrifugation at 1,000 × g for 10 min and resuspended in fresh Tyrode’s buffer. SLE ICs (2 µg aggregated human IgG equivalents) were added to the platelet suspension and incubated for 2 h at 37 °C. The supernatants were then collected and sequentially centrifuged at 2,000 × g for 20 min, 10,000 × g for 30 min, and 100,000 × g for 70 min to isolate pEVs. The resulting pellets were washed in PBS and resuspended in 40 µL of sterile PBS for subsequent assays. The pEVs were quantified by nanoparticle tracking analysis and characterized by immunoblotting for CD41, CD63, CD9, and CD81. For stimulation experiments, approximately 1 × 10⁸ pEV particles were added to 2 × 10⁶ PBMCs and incubated for 24 h, unless otherwise indicated.

    Transient transfection

    Human PBMCs (1 × 10⁶ cells) were transiently transfected with 30 nM Toll-like receptor (TLR)7/8 siRNA (Dharmacon, Horizon, USA) or control siRNA using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions and incubated at 37 °C for 24 h. Knockdown efficiency of TLR7/8 was confirmed by immunoblotting.

    Quantitative polymerase chain reaction (PCR) for TsRNAs

    tsRNAs were extracted from PBMCs using the rtStar tRF&tiRNA Pretreatment Kit (Arraystar, USA) to remove RNA modifications. Twenty-five femtomoles of synthetic Caenorhabditis elegans miRNA (cel-miR-39; Thermo Fisher Scientific, USA) were added to each sample as an internal control. For cDNA synthesis, 250 ng of total tsRNA was reverse-transcribed using the rtStar cDNA Synthesis Kit (Arraystar, USA). Real-time PCR quantification of specific tsRNAs was performed with the LightCycler 480 SYBR Green I Master (Roche, Germany) and specific primers (Supplementary Table 1) and analyzed on the LightCycler 96 real-time PCR System (Roche, Germany) using the standard thermoprofile recommended by the manufacturer. Relative expression was calculated using the comparative threshold cycle (Ct) method and expressed as 2ΔCt, where ΔCt = [mean of control subjects (CttsRNA − Ctcel−miR−39)] − [patient (CttsRNA − Ctcel−miR−39)].

    Immunofluorescence assay

    Human PBMCs were fixed with 4% paraformaldehyde (Sigma-Aldrich, USA) for 10 min at room temperature, washed with PBS (Thermo Fisher Scientific, USA), permeabilized in PBS containing 1% bovine serum albumin (Thermo Fisher Scientific, USA) and 0.2% saponin (Sigma-Aldrich, USA), and then blocked in PBS containing 2% bovine serum albumin for 1 h. LDs were stained with 2 µM BODIPY 493/503 (Thermo Fisher Scientific, USA) for 30 min. Coverslips were mounted using SlowFade mounting medium (Thermo Fisher Scientific, USA), and images were acquired with an Olympus FV1000 confocal microscope. Image analysis was performed using FV10-ASW software version 4.2 (Olympus).

    Flow cytometry

    For LD analysis, PBMCs were stained with 2 µM BODIPY 493/503 (Thermo Fisher Scientific, USA) for 30 min at 37 °C in the dark, washed twice with PBS, and resuspended in PBS for acquisition. LD content was quantified by the mean fluorescence intensity (MFI) of the BODIPY 493/503 signal in the FITC channel. The gating strategy included: (i) exclusion of debris based on forward scatter (FSC) and side scatter (SSC) profiles, (ii) elimination of doublets using FSC-A versus FSC-H plots, and (iii) selection of viable PBMCs for analysis of BODIPY 493/503 fluorescence. Samples were acquired on a FACSCanto II flow cytometer (BD Biosciences, USA), and data were analyzed using CellQuest (version 6.0, BD Biosciences) or FlowJo (version 10.10.0, BD Biosciences).

    Immunoblotting

    Cells were lysed in RIPA lysis and extraction buffer (Thermo Fisher Scientific, USA) supplemented with protease inhibitors (Roche, Germany). Equal amounts (40 µg) of total protein were separated by SDS–polyacrylamide gel electrophoresis, transferred to polyvinylidene fluoride membranes (Millipore, USA), and incubated with primary antibodies followed by horseradish peroxidase–conjugated secondary antibodies (listed in Supplementary Materials). Signals were detected using enhanced chemiluminescence (Millipore, USA) and visualized with a CCD imaging system (GE Healthcare, USA). Band intensities were quantified using ImageJ software, with β-actin (Santa Cruz Biotechnology, USA) serving as the loading control. All experiments were performed in triplicate. Data are presented as mean ± standard deviation (SD). Statistical comparisons were made using a two-tailed unpaired Student’s t-test (GraphPad Prism version 8). Densitometric quantification is provided in Supplementary File 2.

    RNA-seq analysis

    Total RNA (1 µg) from neutrophils was used for library preparation with the TruSeq Stranded mRNA Library Prep Kit (Illumina, RS-122–2001/2002) according to the manufacturer’s protocol. mRNA was enriched using oligo(dT) beads, fragmented, and reverse-transcribed into cDNA. After adaptor ligation and PCR amplification, libraries were purified with the AMPure XP system (Beckman Coulter, USA), quality-checked with the Qsep400 System (Bioptic Inc., Taiwan), and quantified using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, USA). Paired-end sequencing (150 bp) was performed on an Illumina NovaSeq platform. Raw reads were quality-checked with FastQC and trimmed using Trimmomatic. Clean reads were aligned to the human reference genome (GRCh38) using HISAT2, and gene counts were generated with featureCounts. Differential gene expression analysis was performed with DESeq2, and significantly altered genes were defined as those with an adjusted P value < 0.05 and |log₂ fold change| ≥ 1.

    RNA-protein pull-down assay

    A single biotinylated nucleotide was attached to the 3′ terminus of the tRF-His-GTG-1 mimic or control using the Pierce RNA 3′ End Desthiobiotinylation Kit (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. Human neutrophils (2 × 10⁶ cells) were transiently transfected with 30 nM biotin-labeled tRF-His-GTG-1 mimic or control using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific, USA) and incubated for 24 h at 37 °C. After incubation, cells were washed with PBS and lysed with lysis buffer. Following centrifugation at 12,000 × g for 15 min at 4 °C, the supernatant was collected and quantified for protein concentration. RNA-binding proteins associated with the tRF-His-GTG-1 mimic were isolated using the Pierce Magnetic RNA–Protein Pull-Down Kit (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. The immunoprecipitated proteins were analyzed by immunoblotting with the indicated antibodies.

    Statistics

    Results are presented as mean ± SD. Unpaired two-tailed Student’s t-tests and Mann–Whitney U tests were used for between-group comparisons. One-way analysis of variance with Bonferroni post hoc correction was applied for multiple comparisons. Correlations were assessed using Spearman’s correlation coefficient. P values of < 0.05 were considered statistically significant. All statistical analyses were performed using GraphPad Prism version 8.

    Continue Reading

  • Perceived fatigue progression tracking during manual handling tasks using sEMG recordings | Journal of NeuroEngineering and Rehabilitation

    Perceived fatigue progression tracking during manual handling tasks using sEMG recordings | Journal of NeuroEngineering and Rehabilitation

    Fig. 1

    The flowchart of the procedure in this study includes: A Preprocessing the sEMG signals; B Manual handling task segmentation using the joint angles obtained by IMUs; C Segmenting sEMG signals based on IMU-derived time windows; D Identifying and extracting linear and complexity-based MMF indicators; E Analyzing the correlation between MMF indicators and RPE scales; and F Classifying performance fatigue via a long short-term memory (LSTM) model and a convolutional neural network combined with LSTM (CNN-LSTM) using MMF indicators

    Figure 1 provides an overview of the experimental process followed in this study, with subsequent sections offering detailed explanations of each step .

    Experimental procedure

    The study recruited eight able-bodied male participants (average age: 24 ± 2 years, average body mass: 73 ± 11 kg, average body height: 179 ± 4 cm). The participants were instructed to perform repetitive cycles of a manual handling task including lifting a 16-lbs load from a 15-cm high table, turning, placing it on a 75-cm high table, and going to the rest position; lifting the load again from the 75-cm high table, turning, and placing it back on the 15-cm high table (Fig. 2). The participant performed these movements repeatedly and reported their perceived fatigue level using the Borg RPE scale every 2 min. The experiment concluded when participants reported a fatigue level of 9 out of 10 on the RPE scale. Participants performed an average of 146 ± 43 cycles, and each participant completed two recording sessions on different days, each starting in a rested state to minimize potential carryover effects such as residual fatigue or motor adaptation. The Research Ethics Board of the University of Alberta approved the experimental protocol (Approval no. Pro00089234), and the participants provided written consent prior to testing. We used the data used in our previous publications [4, 8].

    Fig. 2
    figure 2

    Manual handling task cycle including lifting (a), carrying, (bd), and lowering (e) activities, followed by a resting position (f)

    Ten sEMG sensors (Trigno, Delsys, USA) were placed on the following muscles on the right side of the participants’ bodies, as all participants were right-handed: Biceps Brachii (Biceps), Flexor Carpi Radialis, Trapezius, Deltoideus Posterior, Erector Spinae Longissimus (L), Erector Spinae Iliocostalis (I), Rectus Femoris, Tibialis Anterior, Biceps Femoris, and Lateral Gastrocnemius with a sampling frequency of 1200 Hz. The sEMG data were first mean-subtracted and then filtered using a zero-lag, 8th-order Butterworth bandpass filter set to 10–500 Hz. Following this, the data were smoothed with a 50 ms window size. The sEMG time series was then normalized to the maximum amplitude during the first five cycles (non-fatigue states) of the experiment to help reduce inter-session variability.

    Additionally, seven IMUs (MTws, Xsens Technologies, NL) were positioned on their sternum, sacrum, right upper arm, forearm, thigh, shank, and foot to monitor joint angles’ kinematics, with a sampling frequency of 100 Hz. Similar to the EMG setup, IMUs were placed only on the right side, as all participants were right-handed. This setup helped reduce the number of sensors required, minimizing participant discomfort and motion constraints during the prolonged trials. Prior to the main experiment, a functional calibration was performed according to the protocol outlined in [23]. This calibration aimed to synchronize the inertial frames of the IMUs with the body’s anatomical frames for measuring joint angles. Participants were instructed to maintain stillness for 5 s, followed by performing ten flexions and extensions of both legs and arms with locked knee and elbow joints. Subsequently, the IMU readings were utilized to calculate body joint angles based on the orientation derived from the Xsens sensor fusion algorithm. Data was preprocessed using MATLAB R2022a (The MathWorks Inc., Natick, MA, USA).

    Data segmentation based on activities

    Our experiment involved a manual handling task with different activities of lifting, carrying, and lowering, and each of them included different body movements and muscle engagements; therefore, the sEMG recordings were first segmented based on these three distinct activities. This segmentation was performed using joint angle data processed in OpenSim, which simulated the motion and identified activity boundaries according to predefined activity definitions. Additionally, each muscle primarily influences the motion of one or more joints and the positions of adjacent joints can also affect the level of muscle engagement due to changes in torque demands, moment arms, and muscle–tendon length. Specifically: (1) Biceps and Flexor Carpi Radialis were associated with the elbow & shoulder flexion/extension, (2) Trapezius and Deltoideus Posterior influenced the shoulder flexion/extension, (3) Erector Spinae L and I influenced the trunk flexion/extension, (4) Rectus Femoris and Biceps Femoris influenced the hip and knee flexion/extension, (5) Tibialis Anterior and Lateral Gastrocnemius influenced the ankle and knee flexion/extension. The sEMG signals were further segmented based on the relevant joints’ ROM, dividing each into two equal segments (0–50% and 50–100% of the ROM).

    sEMG data processing

    Amplitude analysis

    Root Mean Square (RMS) values were used to characterize sEMG signal amplitude for monitoring muscle fatigue [24]. For a discrete signal with N samples, the RMS can be computed using the following formula:

    $$:RMS=:sqrt{frac{1}{N}{int:}_{i=1}^{N}x{left[iright]}^{2}}$$

    (1)

    Where (:xleft[iright]) represents each sample within the analyzed sEMG signal segment.

    As muscle fatigue progresses, the sEMG amplitude generally rises due to the recruitment of additional motor units, and potentially, their excitation at higher firing frequencies to compensate for the declining force-generating capacity of individual muscle fibers. Consequently, higher RMS values are expected in the later stages of RPE scales.

    Spectral analysis

    This approach identifies muscle fatigue by observing a shift in the power spectrum of sEMG signals toward lower frequencies, as indicated by the median frequency. The median frequency is calculated using the following equation:

    $$:{int:}_{0}^{MDF}PSDleft(fright)df=:{int:}_{MDF}^{infty:}PSDleft(fright)df=frac{1}{2}{int:}_{0}^{infty:}PSDleft(fright)df$$

    (2)

    Where (:PSDleft(fright)) is the power spectral density at a given frequency (:f), calculated by the spectrogram function, which performs the Short-Time Fourier Transform of the preprocessed signal [25]. This process involved segmenting the signal with a 128-sample window, 64-sample overlap, and 256 Fast Fourier Transform points, with a sampling frequency of 1200 Hz. The spectrogram function provided the PSD matrix, reflecting the power at various frequencies and times, which was used for further analysis.

    Mobility

    Mobility is quantified as the square root of the ratio of the variance of the signal’s first derivative to the variance of the original signal [22] calculated as follows:

    $$:Mobility=:sqrt{frac{{{sigma:}_{1}}_{x1}^{x2}}{{{sigma:}_{0}}_{x1}^{x2}}}:$$

    (3)

    where (:{{sigma:}_{0}}_{x1}^{x2}) and (:{{sigma:}_{1}}_{x1}^{x2}) are the variance of the sEMG signal and the variance of the first derivative of the sEMG signal, respectively. Both were computed over the full duration of each activity segment (i.e., lifting, carrying, or lowering), with (:{x}_{1}) and (:{x}_{2}) denoting the start and end time points of each segment.

    As fatigue sets in, the mobility of the sEMG signal is expected to decrease due to a reduction in conduction velocity [22].

    Entropy

    Fuzzy entropy, a measure of complexity and regularity in time-series data, was investigated in this study due to its demonstrated robustness in assessing MMF. Fuzzy entropy was computed using the following procedure [16]:

    1. 1.

      The sEMG time-series were divided into overlapping intervals of length (:m).

    2. 2.

      For two sEMG intervals (:{S}_{i}=[{x}_{1},{x}_{2},dots:,:{x}_{m}]) and (:{S}_{j}=[{y}_{1},{y}_{2},dots:,:{y}_{m}]), the distance was calculated as:

    $$:{d}_{i,j}^{m}=text{m}text{a}text{x}left(right|{x}_{1}-{y}_{1}|,|{x}_{2}-{y}_{2}|,dots:,|{x}_{m}-{y}_{m}left|right)$$

    (4)

    1. 3.

      For each pair of intervals, the similarity function was calculated as:

    $$:{Omega:}left({d}_{i,j}^{m},text{n},text{r}right)=text{e}text{x}text{p}(-frac{{left({d}_{ij}^{m}:right)}^{n}}{r})$$

    (5)

    Where (:r) is the similarity threshold and (:n) is the power of the similarity function.

    1. 4.

      (:{C}_{i}^{m}left(rright)), the similarity for interval (:i), was calculated as the average similarity across all other intervals (:j) as:

    $$:{C}_{i}^{m}left(rright)={left(N-m+1right)}^{-1}{sum:}_{j=1,jne:i}^{N-m+1}{Omega:}({d}_{i,j}^{m},text{r})$$

    (6)

    Where N is the total number of sEMG time-serious data points.

    1. 5.

      (:{C}^{m}left(rright)) was calculated as the average of (:{C}_{i}^{m}left(rright)) for all the intervals.

    2. 6.

      Previous steps were repeated for intervals of length (:m+1) to calculate (:{C}^{m+1}left(rright)).

    3. 7.

      Finally, the fuzzy entropy was calculated as:

    $$:FuzzyEnleft(m,n,r,Nright)=-text{l}text{n}left(frac{{C}^{m+1}left(rright)}{{C}^{m}left(rright)}right)$$

    (7)

    The fuzzy entropy was calculated using the FuzzyEn MATLAB function [26] with an embedding dimension of (:m=2), a power factor of (:n=2) for the similarity function, and a similarity threshold of (:r=0.25) [27]. In higher fatigue stages, lower entropy values are anticipated due to the decreased complexity of sEMG signals, which is caused by a reduction in the number of active motor units [16].

    Dimitrov’s index

    To address the low sensitivity of traditional spectral parameters like mean frequency and median frequency for muscle fatigue monitoring, previous studies investigated the relationship between the sEMG power content in low and high frequencies [28]. However, a challenge is defining the boundaries of the high- and low-frequency bands, as their selection can significantly impact the interpretation of muscle fatigue. To overcome this issue, the Dimitrov’s index, a highly sensitive spectral metric, has been proposed. It effectively defines these boundaries using frequency weighting factors, as shown in Eq. 8. The Dimitrov’s index is derived from sEMG spectral characteristics using FFT. Here, the Dimitrov’s index [28] is calculated in the band frequency from 10 Hz to 500 Hz:

    $$:FI=frac{underset{f=10}{overset{500}{int:}}{f}^{-1}.PSleft(fright).df}{underset{f=10}{overset{500}{int:}}{f}^{5}.PSleft(fright).df}$$

    (8)

    Where (:f) denotes frequency (which is the variable of integration), (:PSleft(fright)) is the sEMG power-frequency spectrum as a function of frequency (:f). (:{f}^{-1}) is a frequency weighting factor that gives more emphasis to lower frequencies, increasing their contribution and highlighting the power in the lower frequency range of the sEMG signal. Conversely, (:{f}^{5}) in the denominator is a frequency weighting factor that prioritizes higher frequencies by assigning more weight to larger frequency values, thereby focusing on the power in the higher frequency range.

    As fatigue progresses, the Dimitrov’s index is expected to increase due to the higher power spectral density in the low and ultra-low frequencies compared to the higher frequencies in the higher fatigue stages [28].

    Statistical analysis

    Our approach aimed to initially investigate the correlation between the RPE scales, known as a perceived fatigue evaluator, and the MMF indicator calculated in this study. Thus, Spearman’s correlation coefficients and their corresponding p-values were calculated between each of the MMF indicators and fatigue levels (RPE scales of 1 to 10), utilizing the Fisher’s Z transformation and the generalized Bonferroni-Holm procedure, respectively [29, 30]. Spearman’s correlation was chosen because the analysis focused on monotonic, rather than linear, relationships between the MMF indicators and fatigue levels. For each RPE level, 10 segments were randomly sampled for each activity type (lifting, carrying, and lowering) to reduce autocorrelation and maintain consistency across participants, and MMF indicators were calculated over the full duration of each segment without additional windowing.

    Spearman’s correlation coefficients were computed separately for each session between each MMF indicator and RPE scale. For analysis, correlations from the two sessions of each participant were first averaged (after Fisher Z-transformation) to obtain a single value per participant. The resulting correlation coefficients were transformed using Fisher’s Z transformation and averaged to obtain a group-level correlation value, which was then back-transformed to obtain the final reported Spearman’s ρ. Corresponding session-level p-values were adjusted for multiple comparisons using the generalized Bonferroni-Holm procedure. All statistical analyses were conducted in MATLAB using built-in and custom-written functions.

    Multi-class fatigue detection

    Then, we developed deep learning algorithms to classify multiple stages of perceived fatigue using the MMF indicators as inputs. For this purpose, the extracted MMF indicators from 5 consecutive repetitions were grouped together into a window and labeled into five discrete fatigue level bins using the reported RPE scales: 1–2, 3–4, 5–6, 7–8, and 9–10. The five fatigue levels were chosen because they provided reasonable accuracy while enabling multi-level classification without overcomplicating the process. We first used a long short-term memory (LSTM) network to capture temporal dependencies and complex sequential patterns in time-series data [31]. The model was developed using TensorFlow, incorporating regularization techniques and the Adam optimizer to enhance training efficiency and prevent overfitting. The neural architecture consisted of three LSTM layers with progressively smaller units: 128, 64, and 32, respectively. Each LSTM layer utilized L2 regularization with a strength of 0.01 to mitigate overfitting, and dropout was applied with a rate of 0.5 following each LSTM layer to further address overfitting. The model concluded with three dense layers with 32, 16, and 8 neurons, respectively, each employing the Rectified Linear Unit (ReLU) activation function. The output layer was comprised of five neurons with a SoftMax activation function designed to produce class probabilities corresponding to the five bins of RPE ratings. Leave-one-out cross-validation (LOOCV) was performed to ensure the model’s generalizability across different subjects. This method involved training the model on data from all but one participant and evaluating it on the excluded participant, ensuring a solid assessment of the model’s performance across diverse data subsets.

    To improve predictive accuracy by capturing spatial dependencies of MMF indicators, a CNN-LSTM architecture was implemented. The CNN part of the model included two convolutional layers with 64 and 32 filters, respectively, using a kernel size of 3 and ‘tanh’ activation. Max-pooling layers with a pool size of 2 followed each convolutional layer to reduce spatial dimensions. These convolutional layers were followed by LSTM layers to capture temporal dynamics, allowing the model to learn both spatial and temporal dependencies in the data.

    Continue Reading

  • From the bench to the reactor: engineered filamentous fungi for biochemical and biomaterial production | Biotechnology for Biofuels and Bioproducts

    From the bench to the reactor: engineered filamentous fungi for biochemical and biomaterial production | Biotechnology for Biofuels and Bioproducts

  • Caporael LR. Ergotism: the Satan loosed in Salem? Science. 1976;192(4234):21–6. https://doi.org/10.1126/science.769159.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, et al. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol. 2020;7:5. https://doi.org/10.1186/s40694-020-00095-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cairns TC, Zheng XM, Zheng P, Sun JB, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol Biofuels. 2019;12:77. https://doi.org/10.1186/s13068-019-1400-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, et al. Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol. 2013;163(2):112–23. https://doi.org/10.1016/j.jbiotec.2012.06.024. (From NLM).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C. Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng. 2012;109(2):462–71. https://doi.org/10.1002/bit.23313.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, et al. Insights into the mechanisms involved in the fungal degradation of plastics. Ecotoxicol Environ Saf. 2023;262:115202. https://doi.org/10.1016/j.ecoenv.2023.115202.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ibrahim SS, Ionescu D, Grossart H-P. Tapping into fungal potential: biodegradation of plastic and rubber by potent fungi. Sci Total Environ. 2024;934:173188. https://doi.org/10.1016/j.scitotenv.2024.173188.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meng X, Yang L, Liu H, Li Q, Xu G, Zhang Y, et al. Protein engineering of stable IsPETase for PET plastic degradation by Premuse. Int J Biol Macromol. 2021;180:667–76. https://doi.org/10.1016/j.ijbiomac.2021.03.058.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garg S, Kim M, Romero-Suarez D. Current advancements in fungal engineering technologies for sustainable development goals. Trends Microbiol. 2024. https://doi.org/10.1016/j.tim.2024.11.001.

    Article 
    PubMed 

    Google Scholar 

  • Pullen RM, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, et al. Considerations for domestication of novel strains of filamentous fungi. ACS Synth Biol. 2025;14(2):343–62. https://doi.org/10.1021/acssynbio.4c00672.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol. 2016;3(1):6. https://doi.org/10.1186/s40694-016-0024-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madhavan A, Arun KB, Sindhu R, Alphonsa Jose A, Pugazhendhi A, Binod P, et al. Engineering interventions in industrial filamentous fungal cell factories for biomass valorization. Bioresour Technol. 2022;344:126209. https://doi.org/10.1016/j.biortech.2021.126209.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Varriale L, Ulber R. Fungal-based biorefinery: from renewable resources to organic acids. ChemBioEng Rev. 2023;10(3):272–92. https://doi.org/10.1002/cben.202200059.

    Article 
    CAS 

    Google Scholar 

  • Wang C, Kuzyakov Y. Mechanisms and implications of bacterial–fungal competition for soil resources. ISME J. 2024. https://doi.org/10.1093/ismejo/wrae073.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Gimbert IH, et al. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol. 2014;1(1):1. https://doi.org/10.1186/s40694-014-0001-z.

    Article 
    PubMed Central 

    Google Scholar 

  • Pleissner D, Dietz D, van Duuren J, Wittmann C, Yang X, Lin CSK, et al. Biotechnological production of organic acids from renewable resources. Adv Biochem Eng Biotechnol. 2019;166:373–410. https://doi.org/10.1007/10_2016_73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Behera BC. Citric acid from Aspergillus niger: a comprehensive overview. Crit Rev Microbiol. 2020;46(6):727–49. https://doi.org/10.1080/1040841X.2020.1828815.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steiger MG, Rassinger A, Mattanovich D, Sauer M. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metab Eng. 2019;52:224–31. https://doi.org/10.1016/j.ymben.2018.12.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tong Z, Zheng X, Tong Y, Shi Y-C, Sun J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact. 2019;18(1):28. https://doi.org/10.1186/s12934-019-1064-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong ZY, Zheng XM, Tong Y, Shi YC, Sun JB. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact. 2019. https://doi.org/10.1186/s12934-019-1064-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Upton DJ, McQueen-Mason SJ, Wood AJ. In silico evolution of Aspergillus niger organic acid production suggests strategies for switching acid output. Biotechnol Biofuels. 2020;13:27. https://doi.org/10.1186/s13068-020-01678-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Werpy T, Petersen G. Top Value Added Chemicals from Biomass: Volume I — Results of Screening for Potential Candidates from Sugars and Synthesis Gas; DOE/GO-102004-1992; TRN: US200427%%671; National Renewable Energy Lab. (NREL), Golden, CO (United States), United States, 2004. https://doi.org/10.2172/15008859.

  • Kövilein A, Kubisch C, Cai L, Ochsenreither K. Malic acid production from renewables: a review. J Chem Technol Biotechnol. 2020;95(3):513–26. https://doi.org/10.1002/jctb.6269.

    Article 
    CAS 

    Google Scholar 

  • Xu Y, Zhou Y, Cao W, Liu H. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux. ACS Synth Biol. 2020;9(6):1418–25. https://doi.org/10.1021/acssynbio.0c00096.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, et al. Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels. 2016;9(1):135. https://doi.org/10.1186/s13068-016-0553-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, et al. Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels. 2016;9(1):67. https://doi.org/10.1186/s13068-016-0483-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park EY. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol. 2009;84(4):597–606. https://doi.org/10.1007/s00253-009-2132-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • da Cruz JC, de Castro AM, Servulo EFC. World market and biotechnological production of itaconic acid. 3 Biotech. 2018;8:138. https://doi.org/10.1007/s13205-018-1151-0.

    Article 

    Google Scholar 

  • Chiloeches A, Cuervo-Rodríguez R, López-Fabal F, Fernández-García M, Echeverría C, Muñoz-Bonilla A. Antibacterial and compostable polymers derived from biobased itaconic acid as environmentally friendly additives for biopolymers. Polym Test. 2022;109:107541. https://doi.org/10.1016/j.polymertesting.2022.107541.

    Article 
    CAS 

    Google Scholar 

  • Teleky BE, Vodnar DC. Biomass-derived production of itaconic acid as a building block in specialty polymers. Polymers. 2019. https://doi.org/10.3390/polym11061035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang J, Yue H-R, Pan L-Y, Feng J-X, Zhao S, Suwannarangsee S, et al. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: current status and future prospects. Bioresour Technol. 2023;385:129449. https://doi.org/10.1016/j.biortech.2023.129449.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, et al. Carbon catabolite repression in filamentous fungi. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms19010048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Assis LJ, Silva LP, Bayram O, Dowling P, Kniemeyer O, Krüger T, et al. Carbon catabolite repression in filamentous fungi is regulated by phosphorylation of the transcription factor CreA. MBio. 2021. https://doi.org/10.1128/mBio.03146-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Z-D, Wang B-T, Jin L, Ruan H-H, Jin F-J. Implications of carbon catabolite repression for Aspergillus-based cell factories: a review. Biotechnol J. 2024;19(2):2300551. https://doi.org/10.1002/biot.202300551.

    Article 
    CAS 

    Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A. 2012;109(19):7397–402. https://doi.org/10.1073/pnas.1200785109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chroumpi T, Makela MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv. 2020;43:107551. https://doi.org/10.1016/j.biotechadv.2020.107551.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu JJ, Xie ZP, Shin HD, Li JH, Du GC, Chen J, et al. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. J Biotechnol. 2017;253:1–9. https://doi.org/10.1016/j.jbiotec.2017.05.011.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Max B, Salgado JM, Rodriguez N, Cortes S, Converti A, Dominguez JM. Biotechnological production of citric acid. Braz J Microbiol. 2010;41(4):862–75. https://doi.org/10.1590/S1517-83822010000400005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engel CAR, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM. Fumaric acid production by fermentation. Appl Microbiol Biotechnol. 2008;78(3):379–89. https://doi.org/10.1007/s00253-007-1341-x.

    Article 
    CAS 

    Google Scholar 

  • Kuenz A, Gallenmuller Y, Willke T, Vorlop KD. Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol. 2012;96(5):1209–16. https://doi.org/10.1007/s00253-012-4221-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alcantara J, Mondala A, Hughey L, Shields S. Direct succinic acid production from minimally pretreated biomass using sequential solid-state and slurry fermentation with mixed fungal cultures. Fermentation. 2017;3(3):30.

    Article 

    Google Scholar 

  • Strasser H, Burgstaller W, Schinner F. High-yield production of oxalic-acid for metal leaching processes by Aspergillus-Niger. FEMS Microbiol Lett. 1994;119(3):365–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hossain AH, Ter Beek A, Punt PJ. Itaconic acid degradation in Aspergillus niger: the role of unexpected bioconversion pathways. Fungal Biol Biotechnol. 2019;6:1. https://doi.org/10.1186/s40694-018-0062-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang L, Henriksen MM, Hansen RS, Lübeck M, Vang J, Andersen JE, et al. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR–Cas9 system for succinic acid production from renewable biomass. Biotechnol Biofuels. 2020;13(1):206. https://doi.org/10.1186/s13068-020-01850-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ilyas S, Chi R-A, Lee J-C. Fungal bioleaching of metals from mine tailing. Miner Process Extr Metall Rev. 2013;34(3):185–94. https://doi.org/10.1080/08827508.2011.623751.

    Article 
    CAS 

    Google Scholar 

  • Ozer Uyar GE, Uyar B. Potato peel waste fermentation by Rhizopus oryzae to produce lactic acid and ethanol. Food Sci Nutr. 2023;11(10):5908–17. https://doi.org/10.1002/fsn3.3670.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai D-M, Li S-Z, Liu ZL, Cui Z-F. Enhanced l-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Appl Biochem Biotechnol. 2008;144(1):79–85. https://doi.org/10.1007/s12010-007-8078-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian Q, Feng Y, Huang H, Zhang J, Yu Y, Guan Z, et al. Production of lactobionic acid from lactose using the cellobiose dehydrogenase-3-HAA-laccase system from Pycnoporus sp. SYBC-L10. Lett Appl Microbiol. 2018;67(6):589–97. https://doi.org/10.1111/lam.13070.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004;86(11):807–15. https://doi.org/10.1016/j.biochi.2004.09.017.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ji X-J, Zhang A-H, Nie Z-K, Wu W-J, Ren L-J, Huang H. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. Bioresour Technol. 2014;170:356–60. https://doi.org/10.1016/j.biortech.2014.07.098.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crawford MA, Sinclair AJ, Hall B, Ogundipe E, Wang Y, Bitsanis D, et al. The imperative of arachidonic acid in early human development. Prog Lipid Res. 2023;91:101222. https://doi.org/10.1016/j.plipres.2023.101222.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Man R, German L. Certifying the sustainability of biofuels: promise and reality. Energ Policy. 2017;109:871–83. https://doi.org/10.1016/j.enpol.2017.05.047.

    Article 

    Google Scholar 

  • Santek M, Beluhan S, Santek B. Production of microbial lipids from lignocellulosic biomass. In: Nageswara-Rao M, Soneji J, editors. Advances in Biofuels and Bioenergy. 2018.

  • Sayeda AA, Mohsen SA, Osama HES, Azhar AH, Saher SM. Biodiesel production from Egyptian isolate Fusarium oxysporum NRC2017. Bull Natl Res Cent. 2019;43(1):210. https://doi.org/10.1186/s42269-019-0254-z.

    Article 

    Google Scholar 

  • Bogdan VI, Koklin AE, Krasovsky VG, Lunin VV, Sergeeva YE, Ivashechkin AA, et al. Production of fatty acid methyl esters that are the basis for biodiesel fuel from mycelial fungi lipids extracted by supercritical CO2. Russ J Phys Chem B+. 2014;8(8):1004–8. https://doi.org/10.1134/S1990793114080028.

    Article 
    CAS 

    Google Scholar 

  • Sergeeva YE, Galanina LA, Andrianova DA, Feofilova EP. Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Micro+. 2008;44(5):523–7. https://doi.org/10.1134/S0003683808050128.

    Article 
    CAS 

    Google Scholar 

  • Mhlongo SI, Ezeokoli OT, Roopnarain A, Ndaba B, Sekoai PT, Habimana O, et al. The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.637381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang S, Zhang L, Xu G, Li F, Li X. A review on biodiesel production from microalgae: influencing parameters and recent advanced technologies. Front Microbiol. 2022. https://doi.org/10.3389/fmicb.2022.970028.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabatabaei M, Alidadi A, Dehhaghi M, Kazemi Shariat Panahi H, Lam SS, Nizami A-S, et al. Fungi as bioreactors for biodiesel production. In: Salehi Jouzani G, Tabatabaei M, Aghbashlo M, editors. Fungi in fuel biotechnology. Cham: Springer International Publishing; 2020. p. 39–67.

    Chapter 

    Google Scholar 

  • Zhang K, Huang B, Yuan K, Ji X, Song P, Ding Q, et al. Comparative transcriptomics analysis of the responses of the filamentous fungus Glarea lozoyensis to different carbon sources. Front Microbiol. 2020;11:190. https://doi.org/10.3389/fmicb.2020.00190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, et al. Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina. Biotechnol Biofuels. 2020;13(1):116. https://doi.org/10.1186/s13068-020-01757-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu HQ, Chen HQ, Tang X, Yang Q, Zhang H, Chen YQ, et al. Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpina. J Biotechnol. 2021;325:325–33. https://doi.org/10.1016/j.jbiotec.2020.10.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang LL, Tang X, Zhang H, Chen YQ, Chen HQ, Chen W. Improved lipogenesis in Mortierella alpina by abolishing the Snf4-mediated energy-saving mode under low glucose. J Agric Food Chem. 2020;68(39):10787–98. https://doi.org/10.1021/acs.jafc.0c04572.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang LL, Tang X, Lu HQ, Zhang H, Chen YQ, Chen HQ, et al. Role of adenosine monophosphate deaminase during fatty acid accumulation in oleaginous fungus Mortierella alpina. J Agric Food Chem. 2019;67(34):9551–9. https://doi.org/10.1021/acs.jafc.9b03603.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In: Laskin AI, Bennett JW, Gadd GM, editors. Advances in applied microbiology, vol. 51. London: Academic Press; 2002. p. 1–52.

    Google Scholar 

  • Subhash GV, Mohan SV. Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers Biorefin. 2015;5(2):215–26. https://doi.org/10.1007/s13399-014-0128-4.

    Article 
    CAS 

    Google Scholar 

  • Bento HBS, Carvalho AKF, Reis CER, De Castro HF. Single cell oil production and modification for fuel and food applications: assessing the potential of sugarcane molasses as culture medium for filamentous fungus. Ind Crops Prod. 2020;145:112141. https://doi.org/10.1016/j.indcrop.2020.112141.

    Article 
    CAS 

    Google Scholar 

  • Bonatsos N, Marazioti C, Moutousidi E, Anagnostou A, Koutinas A, Kookos IK. Techno-economic analysis and life cycle assessment of heterotrophic yeast-derived single cell oil production process. Fuel. 2020;264:116839. https://doi.org/10.1016/j.fuel.2019.116839.

    Article 
    CAS 

    Google Scholar 

  • Zhuang J, Marchant MA, Nokes SE, Strobel HJ. Economic analysis of cellulase production methods for bio-ethanol. Appl Eng Agric. 2007;23(5):679–87. https://doi.org/10.13031/2013.23659.

    Article 

    Google Scholar 

  • Mohanasrinivasan V, Dhrisya P, Dipinsha KP, Unnithan CM, Viswanath KM, Devi CS. comparative study of the lipase yield by solid state and submerged fermentations using fungal species from biopharmaceutical oil waste. Afr J Biotechnol. 2009;8(1):73–6.

    CAS 

    Google Scholar 

  • Castilho LR, Polato CMS, Baruque EA, Sant’Anna GL, Freire DMG. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem Eng J. 2000;4(3):239–47. https://doi.org/10.1016/S1369-703X(99)00052-2.

    Article 
    CAS 

    Google Scholar 

  • Manan MA, Webb C. Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng. 2017;4(1):511–32. https://doi.org/10.15406/jabb.2017.04.00094.

    Article 

    Google Scholar 

  • Liu L, Song J, Li Y, Li P, Wang HL. Robust and cost-saving static solid cultivation method for lipid production using the chlamydospores of Phanerochaete chrysosporium. Biotechnol Biofuels. 2019;12:123. https://doi.org/10.1186/s13068-019-1464-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bamidele MO, Bamikale MB, Cárdenas-Hernández E, Bamidele MA, Castillo-Olvera G, Sandoval-Cortes J, et al. Bioengineering in solid-state fermentation for next sustainable food bioprocessing. Next Sustainability. 2025;6:100105. https://doi.org/10.1016/j.nxsust.2025.100105.

    Article 

    Google Scholar 

  • Borkertas S, Viskelis J, Viskelis P, Streimikyte P, Gasiunaite U, Urbonaviciene D. Fungal biomass fermentation: valorizing the food industry’s waste. Fermentation. 2025;11(6):351.

    Article 
    CAS 

    Google Scholar 

  • Zhang B-B, Lu L-P, Xu G-R. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: a mechanistic study. J Biotechnol. 2015;206:60–5. https://doi.org/10.1016/j.jbiotec.2015.04.011.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact. 2021. https://doi.org/10.1186/s12934-021-01542-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo). 2012;65(8):385–95. https://doi.org/10.1038/ja.2012.27.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 2019;17(3):167–80. https://doi.org/10.1038/s41579-018-0121-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, et al. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Natl Acad Sci U S A. 2018;115(4):E753–61. https://doi.org/10.1073/pnas.1715954115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou XW, Zhu HF, Liu L, Lin J, Tang KX. A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol. 2010;86(6):1707–17. https://doi.org/10.1007/s00253-010-2546-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mendoza N, Silva EME. Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance. Intechopen. 2018. https://doi.org/10.5772/intechopen.78226.

    Article 

    Google Scholar 

  • Talbot NJ. Plant immunity: a little help from fungal friends. Curr Biol. 2015;25(22):R1074-1076. https://doi.org/10.1016/j.cub.2015.09.068.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li J, Mutanda I, Wang K, Yang L, Wang J, Wang Y. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat Commun. 2019;10(1):4850. https://doi.org/10.1038/s41467-019-12879-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji Y, Bi JN, Yan B, Zhu XD. Taxol-producing fungi: a new approach to industrial production of Taxol. Chin J Biotechnol. 2006;22(1):1–6. https://doi.org/10.1016/s1872-2075(06)60001-0.

    Article 

    Google Scholar 

  • El-Sayed ASA, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, et al. Exploiting the biosynthetic potency of Taxol from fungal endophytes of conifers plants; genome mining and metabolic manipulation. Molecules. 2020;25(13):3000. https://doi.org/10.3390/molecules25133000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9(2):160–8. https://doi.org/10.1016/j.ymben.2006.10.005.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng. 2008;10(3):201–6. https://doi.org/10.1016/j.ymben.2008.03.001.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, et al. Molecular aspects of mycotoxins-a serious problem for human health. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21218187.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boysen JM, Saeed N, Hillmann F. Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus. Beilstein J Org Chem. 2021;17:1814–27. https://doi.org/10.3762/bjoc.17.124.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem Toxicol. 2018;112:310–9. https://doi.org/10.1016/j.fct.2017.12.066.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao Q, Qiu Y, Wang X, Gu Y, Zhao Y, Wang Y, et al. Inhibitory effects of Eurotium cristatum on growth and aflatoxin B1 biosynthesis in Aspergillus flavus. Front Microbiol. 2020;11:921. https://doi.org/10.3389/fmicb.2020.00921.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paterson RRM, Lima N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms. 2017. https://doi.org/10.3390/microorganisms5030044.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paterson RRM. Fungi and fungal toxins as weapons. Mycol Res. 2006;110:1003–10. https://doi.org/10.1016/j.mycres.2006.04.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng J-T, Cao F, Chen X-A, Li Y-Q, Mao X-M. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics. 2020;21(1):424. https://doi.org/10.1186/s12864-020-06813-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotech Bioch. 2007;71(9):2105–23. https://doi.org/10.1271/bbb.70183.

    Article 
    CAS 

    Google Scholar 

  • Li YS, Wang ZH, Beier RC, Shen JZ, De Smet D, De Saeger S, et al. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agr Food Chem. 2011;59(8):3441–53. https://doi.org/10.1021/jf200767q.

    Article 
    CAS 

    Google Scholar 

  • Udomkun P, Wiredu AN, Nagle M, Müller J, Vanlauwe B, Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – a review. Food Control. 2017;76:127–38. https://doi.org/10.1016/j.foodcont.2017.01.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benedict K, Chiller TM, Mody RK. Invasive fungal infections acquired from contaminated food or nutritional supplements: a review of the literature. Foodborne Pathog Dis. 2016;13(7):343–9. https://doi.org/10.1089/fpd.2015.2108.

    Article 
    PubMed 

    Google Scholar 

  • Leitao AL, Enguita FJ. Systematic structure-based search for ochratoxin-degrading enzymes in proteomes from filamentous fungi. Biomolecules. 2021. https://doi.org/10.3390/biom11071040.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, et al. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 2018;113:74–85. https://doi.org/10.1016/j.foodres.2018.06.067.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rustom IYS. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem. 1997;59(1):57–67. https://doi.org/10.1016/S0308-8146(96)00096-9.

    Article 
    CAS 

    Google Scholar 

  • Gemede HF. Toxicity, mitigation, and chemical analysis of aflatoxins and other toxic metabolites produced by Aspergillus: a comprehensive review. Toxins (Basel). 2025. https://doi.org/10.3390/toxins17070331.

    Article 
    PubMed 

    Google Scholar 

  • Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, et al. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1996;93(4):1418–22. https://doi.org/10.1073/pnas.93.4.1418.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu J, Chang PK, Cary JW, Wright M, Bhatnagar D, Cleveland TE, et al. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol. 1995;61(6):2365–71. https://doi.org/10.1128/aem.61.6.2365-2371.1995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang P, Xu J, Chang PK, Liu Z, Kong Q. New insights of transcriptional regulator AflR in Aspergillus flavus physiology. Microbiol Spectr. 2022;10(1):e0079121. https://doi.org/10.1128/spectrum.00791-21FromNLM.

    Article 
    PubMed 

    Google Scholar 

  • Cary JW, Ehrlich KC, Wright M, Chang PK, Bhatnagar D. Generation of aflR disruption mutants of Aspergillus parasiticus. Appl Microbiol Biotechnol. 2000;53((6)):680–4. https://doi.org/10.1007/s002530000319.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol. 1998;64(10):3713–7. https://doi.org/10.1128/aem.64.10.3713-3717.1998.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang PK. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Genet Genomics. 2003;268(6):711–9. https://doi.org/10.1007/s00438-003-0809-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flaherty JE, Payne GA. Overexpression of aflR leads to upregulation of pathway gene transcription and increased aflatoxin production in Aspergillus flavus. Appl Environ Microbiol. 1997;63(10):3995–4000. https://doi.org/10.1128/aem.63.10.3995-4000.1997.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang PK, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol. 1995;61(6):2372–7. https://doi.org/10.1128/aem.61.6.2372-2377.1995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du W, Obrian GR, Payne GA. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Food Addit Contam. 2007;24(10):1043–50. https://doi.org/10.1080/02652030701513826.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol. 2011;49(3):329–39. https://doi.org/10.1007/s12275-011-1009-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aghcheh RK, Kubicek CP. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol. 2015;99(15):6167–81. https://doi.org/10.1007/s00253-015-6763-2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shwab EK, Bok Jin W, Tribus M, Galehr J, Graessle S, Keller Nancy P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. 2007;6(9):1656–64. https://doi.org/10.1128/ec.00186-07.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niehaus EM, Rindermann L, Janevska S, Münsterkötter M, Güldener U, Tudzynski B. Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Appl Microbiol Biotechnol. 2018;102(1):279–95. https://doi.org/10.1007/s00253-017-8590-0.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang KL, Liang LL, Ran FL, Liu YH, Li ZG, Lan HH, et al. The dmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep. 2016. https://doi.org/10.1038/srep23259.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Afroz Toma M, Rahman MH, Rahman MS, Arif M, Nazir KHMNH, Dufossé L. Fungal pigments: carotenoids, riboflavin, and polyketides with diverse applications. J Fungi. 2023;9(4):454.

    Article 
    CAS 

    Google Scholar 

  • Meruvu H, Dos Santos JC. Colors of life: a review on fungal pigments. Crit Rev Biotechnol. 2021;41(8):1153–77. https://doi.org/10.1080/07388551.2021.1901647.

    Article 
    PubMed 

    Google Scholar 

  • Cavalcante SB, da Silva AF, Pradi L, Lacerda JWF, Tizziani T, Sandjo LP, et al. Antarctic fungi produce pigment with antimicrobial and antiparasitic activities. Braz J Microbiol. 2024;55(2):1251–63. https://doi.org/10.1007/s42770-024-01308-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mwaheb MA, Hasanien YA, Zaki AG, Abdel-Razek AS, Al Halim LRA. Fusarium verticillioides pigment: production, response surface optimization, gamma irradiation and encapsulation studies. BMC Biotechnol. 2024;24(1):84. https://doi.org/10.1186/s12896-024-00909-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venil CK, Velmurugan P, Dufossé L, Devi PR, Ravi AV. Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi. 2020. https://doi.org/10.3390/jof6020068.

    Article 

    Google Scholar 

  • Zhou M, Yajun C, Xue F, Li W, Zhang Y. Isolation and identification of pigment-producing filamentous fungus DBFL05 and its pigment characteristics and chemical structure. CyTA – Journal of Food. 2023;21(1):374–85. https://doi.org/10.1080/19476337.2023.2207613.

    Article 
    CAS 

    Google Scholar 

  • Gomes DC. Fungal pigments: applications and their medicinal potential. In: Deshmukh SK, Takahashi JA, Saxena S, editors. Fungi bioactive metabolites: integration of pharmaceutical applications. Singapore: Springer Nature; 2024. p. 651–81.

    Chapter 

    Google Scholar 

  • Dufossé L. Chapter 17 – Biotechnological approaches in the production of fungal pigments. In: Singh RS, Bhari R, editors. Fungal biotechnology. London: Academic Press; 2025. p. 449–66.

    Chapter 

    Google Scholar 

  • Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufossé L. Pigments and colorants from filamentous fungi. In: Merillon J-M, Ramawat KG, editors. Fungal metabolites. Cham: Springer International Publishing; 2016. p. 1–70.

    Google Scholar 

  • Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and some other pigments from fungi and yeasts. Metabolites. 2021. https://doi.org/10.3390/metabo11020092.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61. https://doi.org/10.1016/j.copbio.2013.09.007.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin L, Xu J. Fungal pigments and their roles associated with human health. J Fungi. 2020. https://doi.org/10.3390/jof6040280.

    Article 

    Google Scholar 

  • Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of vitamin B2 (riboflavin) by microorganisms: an overview. Front Bioeng Biotechnol. 2020;8:570828. https://doi.org/10.3389/fbioe.2020.570828.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sajad Hashemi S, Karimi K, Taherzadeh MJ. Integrated process for protein, pigments, and biogas production from baker’s yeast wastewater using filamentous fungi. Bioresour Technol. 2021;337:125356. https://doi.org/10.1016/j.biortech.2021.125356.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Troiano D, Orsat V, Dumont MJ. Solid-state co-culture fermentation of simulated food waste with filamentous fungi for production of bio-pigments. Appl Microbiol Biotechnol. 2022;106(11):4029–39. https://doi.org/10.1007/s00253-022-11984-1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arruda GL, Raymundo M, Cruz-Santos MM, Shibukawa VP, Jofre FM, Prado CA, et al. Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. Crit Rev Biotechnol. 2025;45(2):393–412. https://doi.org/10.1080/07388551.2024.2349581FromNLM.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei J, Zhao X, Yang X, Jia W, Qin J, Li W, et al. Extraction, purification, and structural analysis of green pigments from Metarhizium flavoviride. J Mol Struct. 2025;1334:141913. https://doi.org/10.1016/j.molstruc.2025.141913.

    Article 
    CAS 

    Google Scholar 

  • Kalra R, Conlan XA, Goel M. Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem. 2020;8:369. https://doi.org/10.3389/fchem.2020.00369.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ree Yoon H, Han S, Chul Shin S, Cheong Yeom S, Jin Kim H. Improved natural food colorant production in the filamentous fungus Monascus ruber using CRISPR-based engineering. Food Res Int. 2023;167:112651. https://doi.org/10.1016/j.foodres.2023.112651.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang S, Shu M, Gong Z, Liu X, Zhang C, Liang Y, et al. Enhancing extracellular monascus pigment production in submerged fermentation with engineered microbial consortia. Food Microbiol. 2024;121:104499. https://doi.org/10.1016/j.fm.2024.104499.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin CS, Kim HJ, Kim MJ, Ju JY. Morphological change and enhanced pigment production of monascus when cocultured with saccharomyces cerevisiae or aspergillus oryzae. Biotechnol Bioeng. 1998;59(5):576–81. https://doi.org/10.1002/(sici)1097-0290(19980905)59:5%3c576::aid-bit7%3e3.0.co;2-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6(2):108–28. https://doi.org/10.1016/j.jobab.2021.02.001.

    Article 
    CAS 

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci U S A. 2018;115(25):6506–11. https://doi.org/10.1073/pnas.1711842115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makela MR, Donofrio N, de Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol. 2014;72:2–9. https://doi.org/10.1016/j.fgb.2014.08.010.

    Article 
    PubMed 

    Google Scholar 

  • Lange L, Barrett K, Meyer AS. New method for identifying fungal kingdom enzyme hotspots from genome sequences. J Fungi. 2021. https://doi.org/10.3390/jof7030207.

    Article 

    Google Scholar 

  • Wang Q, Zhong C, Xiao H. Genetic engineering of filamentous fungi for efficient protein expression and secretion. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00293.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linton SM. Review: The structure and function of cellulase (endo-beta-1,4-glucanase) and hemicellulase (beta-1,3-glucanase and endo-beta-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol. 2020;240:110354. https://doi.org/10.1016/j.cbpb.2019.110354.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McMillan JD, Jennings EW, Mohagheghi A, Zuccarello M. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels. 2011;4:29. https://doi.org/10.1186/1754-6834-4-29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol. 1997;14(2):301–4.

    Article 

    Google Scholar 

  • Okal EJ, Aslam MM, Karanja JK, Nyimbo WJ. Mini review: advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microb Pathog. 2020;147:104410. https://doi.org/10.1016/j.micpath.2020.104410.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmoll M, Kubicek CP. Regulation ofTrichodermacellulase formation: lessons in molecular biology from an industrial fungus. Acta Microbiol Immunol Hung. 2003;50(2–3):125–45. https://doi.org/10.1556/AMicr.50.2003.2-3.3. (A review.).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharrock KR. Cellulase assay methods: a review. J Biochem Biophys Methods. 1988;17(2):81–105. https://doi.org/10.1016/0165-022x(88)90040-1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, et al. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: a review. Environ Pollut. 2021;287:117370. https://doi.org/10.1016/j.envpol.2021.117370.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan S, Wu G. Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels. 2013;6(1):177. https://doi.org/10.1186/1754-6834-6-177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou Z, Ju X, Chen J, Wang R, Zhong Y, Li L. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: a review. Bioresour Technol. 2021;319:124159. https://doi.org/10.1016/j.biortech.2020.124159.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Decker SR, Siika-Aho M, Viikari L. Enzymatic depolymerization of plant cell wall hemicelluloses. In Biomass Recalcitrance, 2008; p. 352–373.

  • Poletto M, Ornaghi HL, Zattera AJ. Native cellulose: structure, characterization and thermal properties. Materials. 2014;7(9):6105–19. https://doi.org/10.3390/ma7096105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith PJ, Wang HT, York WS, Pena MJ, Urbanowicz BR. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis. Biotechnol Biofuels. 2017;10:286. https://doi.org/10.1186/s13068-017-0973-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastawde KB. Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol. 1992;8(4):353–68. https://doi.org/10.1007/BF01198746.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, et al. The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J. 2010;99(11):3773–81. https://doi.org/10.1016/j.bpj.2010.10.032.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cherry JR, Wenger K. Biomass conversion to fermentable sugar. In: Bioworld Europe, 2005; p. 10–12.

  • Decker SR, Brunecky R, Yarbrough JM, Subramanian V. Perspectives on biorefineries in microbial production of fuels and chemicals. Front Ind Microbiol. 2023. https://doi.org/10.3389/finmi.2023.1202269.

    Article 

    Google Scholar 

  • Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: status, opportunities and challenges. Sci Total Environ. 2021. https://doi.org/10.1016/j.scitotenv.2021.145988.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ejaz U, Sohail M, Ghanemi A. Cellulases: from bioactivity to a variety of industrial applications. Biomimetics. 2021;6(3):44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen F, Andreotti R, Eveleigh DE, Nystrom J. Mary Elizabeth Hickox Mandels, 90, bioenergy leader. Biotechnol Biofuels. 2009;2:22. https://doi.org/10.1186/1754-6834-2-22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson R, Nevalainen H. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology (Reading). 2012;158(Pt 1):58–68. https://doi.org/10.1099/mic.0.054031-0.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glenn M, Ghosh A, Ghosh BK. Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction. Appl Environ Microbiol. 1985;50(5):1137–43. https://doi.org/10.1128/aem.50.5.1137-1143.1985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact. 2016;15(1):106. https://doi.org/10.1186/s12934-016-0507-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papzan Z, Kowsari M, Javan-Nikkhah M, Gohari AM, Limon MC. Strain improvement of Trichoderma spp. through two-step protoplast fusion for cellulase production enhancement. Can J Microbiol. 2021;67(5):406–14. https://doi.org/10.1139/cjm-2020-0438.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin YY, Zhao S, Lin X, Zhang T, Li CX, Luo XM, et al. Improvement of cellulase and xylanase production in Penicillium oxalicum under solid-state fermentation by flippase recombination enzyme/ recognition target-mediated genetic engineering of transcription repressors. Bioresour Technol. 2021;337:125366. https://doi.org/10.1016/j.biortech.2021.125366.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang F, Zhao X, Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol. 2018;247:676–83. https://doi.org/10.1016/j.biortech.2017.09.126.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao J, Qian Y, Wang Y, Qu Y, Zhong Y. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnol Biofuels. 2017;10:272. https://doi.org/10.1186/s13068-017-0963-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y. Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol. 2016;7:1349. https://doi.org/10.3389/fmicb.2016.01349.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Z, Chen X, Li Z, Li D, Wang Y, Gao H, et al. Strain improvement of Trichoderma viride for increased cellulase production by irradiation of electron and (12)C(6+)-ion beams. Biotechnol Lett. 2016;38(6):983–9. https://doi.org/10.1007/s10529-016-2066-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gunny AA, Arbain D, Jamal P, Gumba RE. Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi J Biol Sci. 2015;22(4):476–83. https://doi.org/10.1016/j.sjbs.2014.11.021.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • El-Ghonemy DH, Ali TH, El-Bondkly AM, Moharam Mel S, Talkhan FN. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase. Antonie Van Leeuwenhoek. 2014;106(5):853–64. https://doi.org/10.1007/s10482-014-0255-8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdeljalil S, Saibi W, Ben Hmad I, Baklouti A, Ben Mahmoud F, Belghith H, et al. Improvement of cellulase and xylanase production by solid-state fermentation of Stachybotrys microspora. Biotechnol Appl Biochem. 2014;61(4):432–40. https://doi.org/10.1002/bab.1195.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, et al. Strain improvement for enhanced production of cellulase in Trichoderma viride. Prikl Biokhim Mikrobiol. 2011;47(1):61–5.

    CAS 
    PubMed 

    Google Scholar 

  • Vu VH, Pham TA, Kim K. Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology. 2011;39(1):20–5. https://doi.org/10.4489/MYCO.2011.39.1.020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park EY, Naruse K, Kato T. Improvement of cellulase production in cultures of Acremonium cellulolyticus using pretreated waste milk pack with cellulase targeting for biorefinery. Bioresour Technol. 2011;102(10):6120–7. https://doi.org/10.1016/j.biortech.2011.02.063.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol. 2011;49(4):366–71. https://doi.org/10.1016/j.enzmictec.2011.06.013.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vu VH, Pham TA, Kim K. Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology. 2009;37(4):267–71. https://doi.org/10.4489/MYCO.2009.37.4.267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels. 2009;2:19. https://doi.org/10.1186/1754-6834-2-19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J Microbiol. 2009;49(2):188–95. https://doi.org/10.1007/s12088-009-0030-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S. Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng. 2009;107(3):256–61. https://doi.org/10.1016/j.jbiosc.2008.11.022.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adsul MG, Bastawde KB, Varma AJ, Gokhale DV. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol. 2007;98(7):1467–73. https://doi.org/10.1016/j.biortech.2006.02.036.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tamada M, Kasai N, Kaetsu I. Improvement of cellulase activity by immobilization of Sporotrichum cellulophilum. Biotechnol Bioeng. 1989;33(10):1343–6. https://doi.org/10.1002/bit.260331017.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han C, Liu YF, Liu MY, Wang SQ, Wang QQ. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol. 2020;164:3361–8. https://doi.org/10.1016/j.ijbiomac.2020.08.225.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dotsenko AS, Rozhkova AM, Zorov IN, Sinitsyn AP. Protein surface engineering of endoglucanase Penicillium verruculosum for improvement in thermostability and stability in the presence of 1-butyl-3-methylimidazolium chloride ionic liquid. Bioresour Technol. 2020;296:122370. https://doi.org/10.1016/j.biortech.2019.122370.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aich S, Datta S. Engineering of a highly thermostable endoglucanase from the GH7 family of Bipolaris sorokiniana for higher catalytic efficiency. Appl Microbiol Biotechnol. 2020;104(9):3935–45. https://doi.org/10.1007/s00253-020-10515-0.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bashirova A, Pramanik S, Volkov P, Rozhkova A, Nemashkalov V, Zorov I, et al. Disulfide bond engineering of an endoglucanase from Penicillium verruculosum to improve its thermostability. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071602.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen X, Li W, Ji P, Zhao Y, Hua C, Han C. Engineering the conserved and noncatalytic residues of a thermostable beta-1,4-endoglucanase to improve specific activity and thermostability. Sci Rep. 2018;8(1):2954. https://doi.org/10.1038/s41598-018-21246-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tishkov VI, Gusakov AV, Cherkashina AS, Sinitsyn AP. Engineering the pH-optimum of activity of the GH12 family endoglucanase by site-directed mutagenesis. Biochimie. 2013;95(9):1704–10. https://doi.org/10.1016/j.biochi.2013.05.018.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qin Y, Wei X, Song X, Qu Y. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol. 2008;135(2):190–5. https://doi.org/10.1016/j.jbiotec.2008.03.016.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, et al. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng. 2005;22(1–3):89–94. https://doi.org/10.1016/j.bioeng.2004.10.003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Collen A, Ward M, Tjerneld F, Stalbrand H. Genetic engineering of the Trichoderma reesei endoglucanase I (Cel7B) for enhanced partitioning in aqueous two-phase systems containing thermoseparating ethylene oxide–propylene oxide copolymers. J Biotechnol. 2001;87(2):179–91. https://doi.org/10.1016/s0168-1656(01)00241-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han C, Wang Q, Sun Y, Yang R, Liu M, Wang S, et al. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. Biotechnol Biofuels. 2020;13:30. https://doi.org/10.1186/s13068-020-1668-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akbarzadeh A, Pourzardosht N, Dehnavi E, Ranaei Siadat SO, Zamani MR, Motallebi M, et al. Disulfide bonds elimination of endoglucanase II from Trichoderma reesei by site-directed mutagenesis to improve enzyme activity and thermal stability: an experimental and theoretical approach. Int J Biol Macromol. 2018;120(Pt B):1572–80. https://doi.org/10.1016/j.ijbiomac.2018.09.164.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taylor LE, Knott BC, Baker JO, Alahuhta PM, Hobdey SE, Linger JG, et al. Engineering enhanced cellobiohydrolase activity. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03501-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michel K, Sluiter J, Payne C, Ness R, Thornton B, Reed M, Schwartz A, Wolfrum E. Determination of Cellulosic Glucan Content in Starch Containing Feedstocks. Laboratory Analytical Procedure (LAP); NREL/TP-2800-76724; National Renewable Energy Laboratory Golden, CO, 2021. https://www.nrel.gov/docs/fy21osti/76724.pdf.

  • Brunecky R, Knott BC, Subramanian V, Linger JG, Beckham GT, Amore A, et al. Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening. J Biol Chem. 2024. https://doi.org/10.1016/j.jbc.2024.105749.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dotsenko AS, Dotsenko GS, Rozhkova AM, Zorov IN, Sinitsyn AP. Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie. 2020;176:103–9. https://doi.org/10.1016/j.biochi.2020.06.007.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pramanik S, Semenova MV, Rozhkova M, Zorov IN, Korotkova O, Sinitsyn AP, et al. An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass. Biotechnol Bioeng. 2021;118(10):4014–27. https://doi.org/10.1002/bit.27877.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolaczkowski BM, Schaller KS, Sorensen TH, Peters GHJ, Jensen K, Krogh K, et al. Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. Biotechnol Biofuels. 2020;13:136. https://doi.org/10.1186/s13068-020-01779-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goedegebuur F, Dankmeyer L, Gualfetti P, Karkehabadi S, Hansson H, Jana S, et al. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. J Biol Chem. 2017;292(42):17418–30. https://doi.org/10.1074/jbc.M117.803270.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker D, Braet C, Brumer H 3rd, Claeyssens M, Divne C, Fagerstrom BR, et al. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochem J. 2001;356(Pt 1):19–30. https://doi.org/10.1042/0264-6021:3560019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodell B, Qian Y, Jellison J. Fungal decay of wood: soft rot—brown rot—white rot. In Development of Commercial Wood Preservatives, ACS Symposium Series, vol. 982; American Chemical Society; 2008. p. 9–31.

  • Lundell TK, Makela MR, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol. 2010;50(1):5–20. https://doi.org/10.1002/jobm.200900338.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Makela MR, Bredeweg EL, Magnuson JK, Baker SE, De Vries RP, Hilden K. Fungal ligninolytic enzymes and their applications. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.FUNK-0017-2016.

    Article 
    PubMed 

    Google Scholar 

  • Patel N, Shahane S, Shivam, Majumdar R, Mishra U. Mode of action, properties, production, and application of laccase: a review. Recent Pat Biotechnol. 2019;13(1):19–32. https://doi.org/10.2174/1872208312666180821161015.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castano JD, Zhang J, Anderson CE, Schilling JS. Oxidative damage control during decay of wood by brown rot fungus using oxygen radicals. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.01937-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kachlishvili E, Asatiani MD, Kobakhidze A, Elisashvili V. Evaluation of lignin-modifying enzyme activity of Trametes spp. (Agaricomycetes) isolated from Georgian forests with an emphasis on T. multicolor biosynthetic potential. Int J Med Mushrooms. 2018;20(10):971–87. https://doi.org/10.1615/IntJMedMushrooms.2018028186.

    Article 
    PubMed 

    Google Scholar 

  • Dao ATN, Smits M, Dang HTC, Brouwer A, de Boer TE. Elucidating fungal Rigidoporus species FMD21 lignin-modifying enzyme genes and 2,3,7,8-tetrachlorodibenzo-p-dioxin degradation by laccase isozymes. Enzyme Microb Technol. 2021;147:109800. https://doi.org/10.1016/j.enzmictec.2021.109800.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandes CD, Nascimento VRS, Meneses DB, Vilar DS, Torres NH, Leite MS, et al. Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network. J Hazard Mater. 2020;399:123094. https://doi.org/10.1016/j.jhazmat.2020.123094.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, et al. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol. 2013;141:97–108. https://doi.org/10.1016/j.biortech.2013.01.173.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng Y, Mao L, Chen Y, Gao S. Ligninase-mediated transformation of 4,4’-dibromodiphenyl ether (BDE 15). Environ Sci Pollut Res Int. 2013;20(9):6667–75. https://doi.org/10.1007/s11356-013-1847-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Romero JO, Fernandez-Fueyo E, Avila-Salas F, Recabarren R, Alzate-Morales J, Martinez AT. Binding and catalytic mechanisms of veratryl alcohol oxidation by lignin peroxidase: a theoretical and experimental study. Comput Struct Biotechnol J. 2019;17:1066–74. https://doi.org/10.1016/j.csbj.2019.07.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Houtman CJ, Maligaspe E, Hunt CG, Fernandez-Fueyo E, Martinez AT, Hammel KE. Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. J Biol Chem. 2018;293(13):4702–12. https://doi.org/10.1074/jbc.RA117.001153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee K, Moon SH. Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J Biotechnol. 2003;102(3):261–8. https://doi.org/10.1016/s0168-1656(03)00027-0.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang X, Wang D, Liu C, Hu M, Qu Y, Gao P. The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochem Biophys Res Commun. 2003;311(2):491–4. https://doi.org/10.1016/j.bbrc.2003.10.029.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6(2):e03170. https://doi.org/10.1016/j.heliyon.2020.e03170.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci. 2012;109(14):5458–63. https://doi.org/10.1073/pnas.1119912109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doddapaneni H, Subramanian V, Fu B, Cullen D. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genet Biol. 2013;55:22–31. https://doi.org/10.1016/j.fgb.2013.03.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang L, Wang ZW, Wang Y, Huang B. Transcriptomic profile of lignocellulose degradation from Trametes versicolor on poplar wood. BioResources. 2017;12(2):2507–27.

    Article 
    CAS 

    Google Scholar 

  • Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351(6278):1192–5. https://doi.org/10.1126/science.aad1431.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacDonald J, Doering M, Canam T, Gong Y, Guttman DS, Campbell MM, et al. Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol. 2011;77(10):3211–8. https://doi.org/10.1128/aem.02490-10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang J, Suzuki T, Mori T, Yin R, Dohra H, Kawagishi H, et al. Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaete sordida YK-624 on native lignin. J Biosci Bioeng. 2021;132(3):253–7. https://doi.org/10.1016/j.jbiosc.2021.05.009.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, et al. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Biotechnol Biofuels. 2021;14(1):131. https://doi.org/10.1186/s13068-021-01975-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korripally P, Hunt CG, Houtman CJ, Jones DC, Kitin PJ, Cullen D, et al. Regulation of gene expression during the onset of ligninolytic oxidation by Phanerochaete chrysosporium on spruce wood. Appl Environ Microbiol. 2015;81(22):7802–12. https://doi.org/10.1128/aem.02064-15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marinović M, Aguilar-Pontes MV, Zhou M, Miettinen O, de Vries RP, Mäkelä MR, et al. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genet Biol. 2018;112:47–54. https://doi.org/10.1016/j.fgb.2017.07.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, et al. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol. 2009;75(12):4058–68. https://doi.org/10.1128/AEM.00314-09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chi YJ, Zhang J. Gene expression of the white-rot fungus Lenzites gibbosa during wood degradation. Mycologia. 2022;114(5):841–56. https://doi.org/10.1080/00275514.2022.2072148.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu X, Zhou Z, Guo G, Li J, Yan H, Li F. Proteomics and metabolomics analysis of the lignin degradation mechanism of lignin-degrading fungus Aspergillus fumigatus G-13. Anal Methods. 2023;15(8):1062–76. https://doi.org/10.1039/d2ay01446g.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duran K, Magnin J, America AHP, Peng M, Hilgers R, de Vries RP, et al. The secretome of Agaricus bisporus: temporal dynamics of plant polysaccharides and lignin degradation. iScience. 2023;26(7):107087. https://doi.org/10.1016/j.isci.2023.107087.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gauna A, Larran AS, Feldman SR, Permingeat HR, Perotti VE. Secretome characterization of the lignocellulose-degrading fungi Pycnoporus sanguineus and Ganoderma resinaceum growing on Panicum prionitis biomass. Mycologia. 2021;113(5):877–90. https://doi.org/10.1080/00275514.2021.1922249.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Erven G, Hilgers R, Waard Pd, Gladbeek E-J, van Berkel WJH, Kabel MA. Elucidation of in situ ligninolysis mechanisms of the selective white-rot fungus Ceriporiopsis subvermispora. ACS Sustain Chem Eng. 2019;7(19):16757–64. https://doi.org/10.1021/acssuschemeng.9b04235.

    Article 
    CAS 

    Google Scholar 

  • Castaño JD, Muñoz-Muñoz N, Kim YM, Liu J, Yang L, Schilling JS. Metabolomics highlights different life history strategies of white and brown rot wood-degrading fungi. mSphere. 2022;7(6):e0054522. https://doi.org/10.1128/msphere.00545-22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6:5961. https://doi.org/10.1038/ncomms6961.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huttner S, Varnai A, Petrovic DM, Bach CX, Kim Anh DT, Thanh VN, et al. Specific xylan activity revealed for AA9 lytic polysaccharide monooxygenases of the thermophilic fungus Malbranchea cinnamomea by functional characterization. Appl Environ Microbiol. 2019;85(23):e01408-e1419. https://doi.org/10.1128/AEM.01408-19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 2018;14(3):306–10. https://doi.org/10.1038/nchembio.2558.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Courtade G, Aachmann FL. Chitin-Active Lytic Polysaccharide Monooxygenases. Adv Exp Med Biol. 2019;1142:115–29. https://doi.org/10.1007/978-981-13-7318-3_6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou X, Xu Z, Li Y, He J, Zhu H. Improvement of the stability and activity of an LPMO through rational disulfide bonds design. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2021.815990.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chorozian K, Karnaouri A, Georgaki-Kondyli N, Karantonis A, Topakas E. Assessing the role of redox partners in TthLPMO9G and its mutants: focus on H(2)O(2) production and interaction with cellulose. Biotechnol Biofuels Bioprod. 2024;17(1):19. https://doi.org/10.1186/s13068-024-02463-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. Bioresour Bioprocess. 2020;7(1):11. https://doi.org/10.1186/s40643-020-0300-6.

    Article 

    Google Scholar 

  • Stepnov AA, Eijsink VGH, Forsberg Z. Enhanced in situ H2O2 production explains synergy between an LPMO with a cellulose-binding domain and a single-domain LPMO. Sci Rep. 2022;12(1):6129. https://doi.org/10.1038/s41598-022-10096-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Satapathy S, Rout JR, Kerry RG, Thatoi H, Sahoo SL. Biochemical prospects of various microbial pectinase and pectin: an approachable concept in pharmaceutical bioprocessing. Front Nutr. 2020;7:117. https://doi.org/10.3389/fnut.2020.00117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suhaimi N, Ramli S, Malek RA, Aziz R, Othman NZ, Leng OM, et al. Optimization of pectinase production by Aspergillus niger using orange pectin based medium. J Chem Pharm Res. 2016;8(2):259–68.

    CAS 

    Google Scholar 

  • Zhao J, Ouyang S, Qi H, Ma K, Hu X, Wang G, et al. Metabolomics and transcriptomics uncover the pectin hydrolysis during tobacco stem fermentation by Aspergillus niger. J Clean Prod. 2024;442:141005. https://doi.org/10.1016/j.jclepro.2024.141005.

    Article 
    CAS 

    Google Scholar 

  • Garrigues S, Kun RS, Peng M, Gruben BS, Benoit Gelber I, Mäkelä M, et al. The cultivation method affects the transcriptomic response of Aspergillus niger to growth on sugar beet pulp. Microbiol Spectr. 2021;9(1):e0106421. https://doi.org/10.1128/Spectrum.01064-21FromNLM.

    Article 
    PubMed 

    Google Scholar 

  • El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M. Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol. 2018;18(1):71. https://doi.org/10.1186/s12896-018-0481-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPdS. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 2017;1(1):52–71. https://doi.org/10.1016/j.biori.2017.01.002.

    Article 

    Google Scholar 

  • Reginatto C, Rossi C, Miglioranza BG, Santos Md, Meneghel L, Silveira MMd, et al. Pectinase production by Aspergillus niger LB-02-SF is influenced by the culture medium composition and the addition of the enzyme inducer after biomass growth. Process Biochem. 2017;58:1–8. https://doi.org/10.1016/j.procbio.2017.04.018.

    Article 
    CAS 

    Google Scholar 

  • de Vries RP, van de Vondervoort PJ, Hendriks L, van de Belt M, Visser J. Regulation of the alpha-glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol Genet Genomics. 2002;268(1):96–102. https://doi.org/10.1007/s00438-002-0729-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Presley GN, Zhang J, Purvine SO, Schilling JS. Functional genomics, transcriptomics, and proteomics reveal distinct combat strategies between lineages of wood-degrading fungi with redundant wood decay mechanisms. Front Microbiol. 2020;11:1646. https://doi.org/10.3389/fmicb.2020.01646.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin W, Xu X, Lv R, Huang W, Ul Haq H, Gao Y, et al. Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain. Biotechnol Lett. 2021;43(4):909–18. https://doi.org/10.1007/s10529-020-03075-w.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gabriel R, Thieme N, Liu Q, Li F, Meyer LT, Harth S, et al. The f-box protein gene exo-1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2025689118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kun RS, Garrigues S, Di Falco M, Tsang A, de Vries RP. The chimeric GaaR-XlnR transcription factor induces pectinolytic activities in the presence of D-xylose in Aspergillus niger. Appl Microbiol Biotechnol. 2021;105(13):5553–64. https://doi.org/10.1007/s00253-021-11428-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol. 2023;39(11):305. https://doi.org/10.1007/s11274-023-03741-x.

    Article 
    PubMed 

    Google Scholar 

  • Suhaimi N, Ramli S, Malek RA, Aziz R, Othman NZ, Leng OM, et al. Optimization of pectinase production by Aspergillus niger using orange pectin based medium. J Chem Pharm Res. 2016;8:259–68.

    CAS 

    Google Scholar 

  • Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPS. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 2017;1:52–71.

    Article 

    Google Scholar 

  • Vries RPd, Vondervoort P, Hendriks L, Belt M, Visser J. Regulation of the α-glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol Genet Genomics. 2002;268:96–102.

    Article 
    PubMed 

    Google Scholar 

  • Sinshaw G, Ayele A, Korsa G, Bekele GK, Gemeda MT. Industrially important microbial enzymes production and their applications. In: Microbial enzymes. 2025. p. 149–172.

  • Salazar-Cerezo S, Kun RS, de Vries RP, Garrigues S. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzyme Microb Technol. 2020;133:109463. https://doi.org/10.1016/j.enzmictec.2019.109463.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kun RS, Gomes ACS, Hilden KS, Cerezo SS, Makela MR, de Vries RP. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.02.017.

    Article 
    PubMed 

    Google Scholar 

  • Geisseler D, Horwath WR. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem. 2008;40(12):3040–8. https://doi.org/10.1016/j.soilbio.2008.09.001.

    Article 
    CAS 

    Google Scholar 

  • Vishwanatha KS, Appu Rao AG, Singh SA. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem. 2009;114(2):402–7. https://doi.org/10.1016/j.foodchem.2008.09.070.

    Article 
    CAS 

    Google Scholar 

  • Naeem M, Manzoor S, Abid MU, Tareen MBK, Asad M, Mushtaq S, et al. Fungal proteases as emerging biocatalysts to meet the current challenges and recent developments in biomedical therapies: an updated review. J Fungi. 2022. https://doi.org/10.3390/jof8020109.

    Article 

    Google Scholar 

  • de Souza PM, Bittencourt ML, Caprara CC, de Freitas M, de Almeida RP, Silveira D, et al. A biotechnology perspective of fungal proteases. Braz J Microbiol. 2015;46(2):337–46. https://doi.org/10.1590/s1517-838246220140359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKelvey SM, Murphy RA. Biotechnological use of fungal enzymes. In: Fungi. 2017. p. 201–225.

  • Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, et al. Industrial applications of fungal lipases: a review. Front Microbiol. 2023. https://doi.org/10.3389/fmicb.2023.1142536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahfoudhi A, Benmabrouk S, Fendri A, Sayari A. Fungal lipases as biocatalysts: a promising platform in several industrial biotechnology applications. Biotechnol Bioeng. 2022;119(12):3370–92. https://doi.org/10.1002/bit.28245.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yaver DS, Lamsa M, Munds R, Brown SH, Otani S, Franssen L, et al. Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol. 2000;29(1):28–37. https://doi.org/10.1006/fgbi.1999.1179.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adachi D, Hama S, Numata T, Nakashima K, Ogino C, Fukuda H, et al. Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. Bioresour Technol. 2011;102(12):6723–9. https://doi.org/10.1016/j.biortech.2011.03.066.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prathumpai W, Flitter SJ, McIntyre M, Nielsen J. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Appl Microbiol Biotechnol. 2004;65(6):714–9. https://doi.org/10.1007/s00253-004-1699-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol. 2016;50(17):8923–9. https://doi.org/10.1021/acs.est.6b02204.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheek M, Nic Lughadha E, Kirk P, Lindon H, Carretero J, Looney B, et al. New scientific discoveries: plants and fungi. Plants People Planet. 2020;2(5):371–88. https://doi.org/10.1002/ppp3.10148.

    Article 

    Google Scholar 

  • Meyer V, Wu B, Ram AFJ. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett. 2011;33(3):469–76. https://doi.org/10.1007/s10529-010-0473-8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L, Haghighat F, et al. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. Bioresour. 2016;11(3):7953–8091.

    Article 

    Google Scholar 

  • Asadollahzadeh M, Ghasemian A, Saraeian A, Resalati H, Taherzadeh MJ. Production of fungal biomass protein by filamentous fungi cultivation on liquid waste streams from pulping process. BioResources. 2018;13(3):5013–31.

    Article 
    CAS 

    Google Scholar 

  • Alriksson B, Hornberg A, Gudnason AE, Knobloch S, Arnason J, Johannsson R. Fish feed from wood. Cell Chem Technol. 2014;48(9–10):843–8.

    CAS 

    Google Scholar 

  • Jin B, Zepf F, Bai ZH, Gao BY, Zhu NW. A biotech-systematic approach to select fungi for bioconversion of winery biomass wastes to nutrient-rich feed. Process Saf Environ. 2016;103:60–8. https://doi.org/10.1016/j.psep.2016.06.034.

    Article 
    CAS 

    Google Scholar 

  • Mondal A, Sengupta S, Bhowal J, Bhattacharya D. Utilization of fruit wastes in producing single cell protein. Int J Sci Environ Technol. 2012;1:430–8.

    Google Scholar 

  • Jin B, Yu Q, van Leeuwen J. A bioprocessing mode for simultaneous fungal biomass protein production and wastewater treatment using an external air-lift bioreactor. J Chem Technol Biotechnol. 2001;76(10):1041–8. https://doi.org/10.1002/jctb.486.

    Article 
    CAS 

    Google Scholar 

  • Jin B, Yan XQ, Yu Q, van Leeuwen JH. A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Adv Environ Res. 2002;6(2):179–89. https://doi.org/10.1016/S1093-0191(01)00049-1.

    Article 
    CAS 

    Google Scholar 

  • Jin B, Yu Q, van Leeuwen JH, Hung Y-T. An integrated biotechnological process for fungal biomass protein production and wastewater reclamation. In: Wang LK, Tay J-H, Tay STL, Hung Y-T, editors. Environmental bioengineering, vol. 11. Totova, NJ: Humana Press; 2010. p. 699–721.

    Chapter 

    Google Scholar 

  • Nitayavardhana S, Khanal SK. Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour Technol. 2010;101(23):9078–85. https://doi.org/10.1016/j.biortech.2010.07.048.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nitayavardhana S, Issarapayup K, Pavasant P, Khanal SK. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresource Technol. 2013;133:301–6. https://doi.org/10.1016/j.biortech.2013.01.073.

    Article 
    CAS 

    Google Scholar 

  • Rasmussen ML, Khanal SK, Pometto AL, van Leeuwen J. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing. Bioresour Technol. 2014;151:284–90. https://doi.org/10.1016/j.biortech.2013.10.080.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Batori V, Ferreira JA, Taherzadeh MJ, Lennartsson PR. Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed Res Int. 2015. https://doi.org/10.1155/2015/176371.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed S, Mustafa G, Arshad M, Rajoka MI. Fungal Biomass Protein Production fromTrichoderma harzianumUsing Rice Polishing. BioMed Res Int. 2017. https://doi.org/10.1155/2017/6232793.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh A, Abidi AB, Agrawal AK, Darmwal NS. Single cell protein-production by Aspergillus-niger and its evaluation. Zbl Mikrobiol. 1991;146(3):181–4. https://doi.org/10.1016/S0232-4393(11)80178-2.

    Article 
    CAS 

    Google Scholar 

  • Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol. 2019;6(1):17. https://doi.org/10.1186/s40694-019-0080-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wattanavichean N, Phanthuwongpakdee J, Koedrith P, Laoratanakul P, Thaithatgoon B, Somrithipol S, et al. Mycelium-based breakthroughs: exploring commercialization, research, and next-gen possibilities. Circ Econ Sustainab. 2025. https://doi.org/10.1007/s43615-025-00539-x.

    Article 

    Google Scholar 

  • Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des. 2020. https://doi.org/10.1016/j.matdes.2019.108397.

    Article 

    Google Scholar 

  • Jones M, Gandia A, John S, Bismarck A. Leather-like material biofabrication using fungi. Nat Sustain. 2021;4(1):9–16. https://doi.org/10.1038/s41893-020-00606-1.

    Article 

    Google Scholar 

  • Garcia C, Prieto MA. Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microb Biotechnol. 2019;12(4):582–5. https://doi.org/10.1111/1751-7915.13306.

    Article 
    PubMed 

    Google Scholar 

  • Amobonye A, Lalung J, Awasthi MK, Pillai S. Fungal mycelium as leather alternative: a sustainable biogenic material for the fashion industry. Sustain Mater Technol. 2023;38:e00724. https://doi.org/10.1016/j.susmat.2023.e00724.

    Article 
    CAS 

    Google Scholar 

  • Wosten HAB, Devries OMH, Wessels JGH. Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell. 1993;5(11):1567–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wosten HAB, Schuren FHJ, Wessels JGH. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J. 1994;13(24):5848–54. https://doi.org/10.1002/j.1460-2075.1994.tb06929.x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wosten HAB, Asgeirsdottir SA, Krook JH, Drenth JHH, Wessels JGH. The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur J Cell Biol. 1994;63(1):122–9.

    CAS 
    PubMed 

    Google Scholar 

  • Wosten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH. How a fungus escapes the water to grow into the air. Curr Biol. 1999;9(2):85–8. https://doi.org/10.1016/S0960-9822(99)80019-0.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Wetter MA, Wosten HAB, Sietsma JH, Wessels JGH. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet Biol. 2000;31(2):99–104. https://doi.org/10.1006/fgbi.2000.1231.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Appels FVW, Dijksterhuis J, Lukasiewicz CE, Jansen KMB, Wosten HAB, Krijgsheld P. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-23171-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong CY. Industrial-scale production and applications of bacterial cellulose. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.605374.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang X, Hu J, Fan X, Yu X. Naturally grown mycelium-composite as sustainable building insulation materials. J Clean Prod. 2022;342:130784. https://doi.org/10.1016/j.jclepro.2022.130784.

    Article 

    Google Scholar 

  • Karana E, Blauwhoff D, Hultink EJ, Camere S. When the material grows: a case study on designing (with) mycelium-based materials. Int J Des. 2018;12(2):119–36.

    Google Scholar 

  • Camere S, Karana E. Fabricating materials from living organisms: an emerging design practice. J Clean Prod. 2018;186:570–84. https://doi.org/10.1016/j.jclepro.2018.03.081.

    Article 

    Google Scholar 

  • Attias N, Danai O, Abitbol T, Tarazi E, Ezov N, Pereman I, et al. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2019.119037.

    Article 

    Google Scholar 

  • Girometta C, Picco AM, Baiguera RM, Dondi D, Babbini S, Cartabia M, et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability. 2019. https://doi.org/10.3390/su11010281.

    Article 

    Google Scholar 

  • Sivaprasad S, Byju SK, Prajith C, Shaju J, Rejeesh CR. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater Today Proc. 2021;47:5038–44. https://doi.org/10.1016/j.matpr.2021.04.622.

    Article 
    CAS 

    Google Scholar 

  • Bhardwaj A, Vasselli J, Lucht M, Pei Z, Shaw B, Grasley Z, et al. 3D printing of biomass-fungi composite material: a preliminary study. Manuf Lett. 2020;24:96–9. https://doi.org/10.1016/j.mfglet.2020.04.005.

    Article 

    Google Scholar 

  • Kalisz RE, Rocco CA, Tengler ECJ. Petrella-Lovasik, R. L. Injection molded mycelium and method. US US8313939B2, 2012.

  • César E, Castillo-Campohermoso MA, Ledezma-Pérez AS, Villarreal-Cárdenas LA, Montoya L, Bandala VM, et al. Guayule bagasse to make mycelium composites: an alternative to enhance the profitability of a sustainable guayule crop. Biocatal Agric Biotechnol. 2023;47:102602. https://doi.org/10.1016/j.bcab.2023.102602.

    Article 
    CAS 

    Google Scholar 

  • Meng D, Mukhitov N, Neitzey D, Lucht M, Schaak DD, Voigt CA. Rapid and simultaneous screening of pathway designs and chassis organisms, applied to engineered living materials. Metab Eng. 2021;66:308–18. https://doi.org/10.1016/j.ymben.2021.01.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McBee RM, Lucht M, Mukhitov N, Richardson M, Srinivasan T, Meng D, et al. Engineering living and regenerative fungal-bacterial biocomposite structures. Nat Mater. 2021. https://doi.org/10.1038/s41563-021-01123-y.

    Article 
    PubMed 

    Google Scholar 

  • Sydor M, Bonenberg A, Doczekalska B, Cofta G. Mycelium-based composites in art, architecture, and interior design: a review. Polymers-Basel. 2022;14(1):145.

    Article 
    CAS 

    Google Scholar 

  • Shen SC, Lee NA, Lockett WJ, Acuil AD, Gazdus HB, Spitzer BN, et al. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. Mater Horiz. 2024;11(7):1689–703. https://doi.org/10.1039/D3MH01277H.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elsacker E, Zhang M, Dade-Robertson M. Fungal engineered living materials: the viability of pure mycelium materials with self-healing functionalities. Adv Func Mater. 2023;33(29):2301875. https://doi.org/10.1002/adfm.202301875.

    Article 
    CAS 

    Google Scholar 

  • Sinha A, Greca LG, Kummer N, Wobill C, Reyes C, Fischer P, et al. Living fiber dispersions from mycelium as a new sustainable platform for advanced materials. Adv Mater. 2025;37(22):2418464. https://doi.org/10.1002/adma.202418464.

    Article 
    CAS 

    Google Scholar 

  • Adamatzky A, Ayres P, Beasley AE, Chiolerio A, Dehshibi MM, Gandia A, et al. Fungal electronics. Biosystems. 2022;212:104588. https://doi.org/10.1016/j.biosystems.2021.104588.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Danninger D, Pruckner R, Holzinger L, Koeppe R, Kaltenbrunner M. MycelioTronics: fungal mycelium skin for sustainable electronics. Sci Adv. 2022;8(45):eadd7118. https://doi.org/10.1126/sciadv.add7118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gandia A, Adamatzky A. Fungal skin for robots. BioSystems. 2024;235:105106. https://doi.org/10.1016/j.biosystems.2023.105106.

    Article 
    PubMed 

    Google Scholar 

  • Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A, Dehshibi MM. Reactive fungal wearable. Biosystems. 2021;199:104304. https://doi.org/10.1016/j.biosystems.2020.104304.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishra AK, Kim J, Baghdadi H, Johnson BR, Hodge KT, Shepherd RF. Sensorimotor control of robots mediated by electrophysiological measurements of fungal mycelia. Sci Robot. 2024;9(93):eadk8019. https://doi.org/10.1126/scirobotics.adk8019.

    Article 
    PubMed 

    Google Scholar 

  • Li K, Jia J, Wu N, Xu Q. Recent advances in the construction of biocomposites based on fungal mycelia. Front Bioeng Biotechnol. 2022;10:1067869. https://doi.org/10.3389/fbioe.2022.1067869.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reyes C, Fivaz E, Sajó Z, Schneider A, Siqueira G, Ribera J, et al. 3D printed cellulose-based fungal battery. ACS Sustain Chem Eng. 2024;12(43):16001–11. https://doi.org/10.1021/acssuschemeng.4c05494.

    Article 
    CAS 

    Google Scholar 

  • Mayne R, Roberts N, Phillips N, Weerasekera R, Adamatzky A. Propagation of electrical signals by fungi. Biosystems. 2023;229:104933. https://doi.org/10.1016/j.biosystems.2023.104933.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phillips N, Weerasekera R, Roberts N, Gandia A, Adamatzky A. Electrical signal transfer characteristics of mycelium-bound composites and fungal fruiting bodies. Fungal Ecol. 2024;71:101358. https://doi.org/10.1016/j.funeco.2024.101358.

    Article 

    Google Scholar 

  • Fukasawa Y, Akai D, Takehi T, Osada Y. Electrical integrity and week-long oscillation in fungal mycelia. Sci Rep. 2024;14(1):15601. https://doi.org/10.1038/s41598-024-66223-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Derbyshire EJ, Brameld JM, Wall BT, Thomas P, Arens U, Forde CG, et al. Is there a specific role for fungal protein within food based dietary guidelines? A roundtable discussion. Nutr Bull. 2025;50(3):514–28. https://doi.org/10.1111/nbu.70011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hellwig C, Moshtaghian H, Persson D, Bolton K, Rousta K, Häggblom-Kronlöf G. Glocal and ecoethical perceptions of engagement with fungi-based food. J Clean Prod. 2024;440:140898. https://doi.org/10.1016/j.jclepro.2024.140898.

    Article 

    Google Scholar 

  • Dean D, Rombach M, Vriesekoop F, de Koning W, Aguiar LK, Anderson M, et al. Should i really pay a premium for this? Consumer perspectives on cultured muscle, plant-based and fungal-based protein as meat alternatives. J Int Food Agribus Mark. 2024;36(3):502–26. https://doi.org/10.1080/08974438.2023.2169428.

    Article 

    Google Scholar 

  • Delvendahl N, Dienel H-L, Meyer V, Langen N, Zimmermann J, Schlecht M. Narratives of fungal-based materials for a new bioeconomy era. Innov Eur J Soc Sci Res. 2023;36(1):96–106. https://doi.org/10.1080/13511610.2022.2110453.

    Article 

    Google Scholar 

  • Xing H, Wang J, Sun Y, Wang H. Recent advances in the allergic cross-reactivity between fungi and foods. J Immunol Res. 2022;2022:7583400. https://doi.org/10.1155/2022/7583400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr Opin Biotechnol. 2020;61:189–97. https://doi.org/10.1016/j.copbio.2019.12.026.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matassa S, Boon N, Pikaar I, Verstraete W. Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol. 2016;9(5):568–75. https://doi.org/10.1111/1751-7915.12369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harper A. Amino Acid Scoring Patterns Nations, Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements, 1981; p Item 3.2.3.

  • Battle M, Bomkamp C, Carter M, Clarke JC, Eastham L, Fathman L, Gertner D, Kirchner J, Leman A, Leet-Otley T. State of the Industry Report: Fermentation: an introduction to a pillar of the alternative protein industry; The Good Food Institute, 2020. https://gfi.org/resource/fermentation-state-of-the-industry-report/.

  • Souza Filho PF. Fungal protein. Adv Food Nutr Res. 2022;101:153–79. https://doi.org/10.1016/bs.afnr.2022.04.003FromNLM.

    Article 
    PubMed 

    Google Scholar 

  • F. B. ENOUGH Ltd. 2023 Sustainability Impact Report; 2024. https://static1.squarespace.com/static/60795d429aac8e2b3c4d04ec/t/663de65048183915acb139e1/1715332712711/ENOUGH+Sustainability+Impact+Report+2023.pdf. Accessed 5 Aug 2025.

  • Maini Rekdal V, van der Luijt CRB, Chen Y, Kakumanu R, Baidoo EEK, Petzold CJ, et al. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat Commun. 2024;15(1):2099. https://doi.org/10.1038/s41467-024-46314-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobson MF, DePorter J. Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Ann Allergy Asthma Immunol. 2018;120(6):626–30. https://doi.org/10.1016/j.anai.2018.03.020.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evaluation of allergenicity of genetically modified foods. In: Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology, 2001.

  • Hileman RE, Silvanovich A, Goodman RE, Rice EA, Holleschak G, Astwood JD, et al. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int Arch Allergy Immunol. 2002;128(4):280–91. https://doi.org/10.1159/000063861.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodman RE, Hefle SL, Taylor SL, van Ree R. Assessing genetically modified crops to minimize the risk of increased food allergy: a review. Int Arch Allergy Immunol. 2005;137(2):153–66. https://doi.org/10.1159/000086314.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdelmoteleb M, Zhang C, Furey B, Kozubal M, Griffiths H, Champeaud M, et al. Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.AllergenOnline.org. Food Chem Toxicol. 2021;147:111888. https://doi.org/10.1016/j.fct.2020.111888.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bartholomai BM, Ruwe KM, Thurston J, Jha P, Scaife K, Simon R, et al. Safety evaluation of Neurospora crassa mycoprotein for use as a novel meat alternative and enhancer. Food Chem Toxicol. 2022;168:113342. https://doi.org/10.1016/j.fct.2022.113342.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waltz E. Gene-edited CRISPR mushroom escapes US regulation. Nature. 2016;532(7599):293–293. https://doi.org/10.1038/nature.2016.19754.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang Y. Confirmation that transgene-free, CRISPR-edited mushroom is not a regulated article. A personal communication from Pennsylania State University faculty in the Department of Plant Pathology and Environmental Microbiology to the USDA-APHIS Deputy Administrator Dr Michael J. Firko. Agriculture, U. S. D. o., Service, A. a. P. H. I., Eds.; 2015.

  • Firko MJ. Re: Request for confirmation that transgene-free, CRISPR-edited mushroom is not a regulated article. In: Yang Y, editor. A reply to a personal communication from Dr. Yinong Yang of the College of Agriculture Sciences, Pennsylvania State University. 2016.

  • Denby CM, Li RA, Vu V, Costello Z, Lin WY, Chan LJG, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03293-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadolkar R, Kumar V, Thole A, Patel D, et al. Distributed Biomanufacturing Facilities of the Future. Biotech bioeng. 2025;122(11):3249-65

    Article 
    CAS 

    Google Scholar 

  • Cortesão, M.; Schütze, T.; Marx, R.; Moeller, R.; Meyer, V. Fungal Biotechnology in Space: Why and How? In Grand Challenges in Fungal Biotechnology, Nevalainen, H. Ed.; Springer International Publishing, 2020; pp 501–535.

  • Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, et al. Microbiomes of the dust particles collected from the International Space Station and spacecraft assembly facilities. Microbiome. 2015;3:50. https://doi.org/10.1186/s40168-015-0116-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carvalho ND, Arentshorst M, Jin Kwon M, Meyer V, Ram AF. Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol. 2010;87(4):1463–73. https://doi.org/10.1007/s00253-010-2588-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • International Space Station – Benefits for Humanity, 3rd edition; NASA, 2018.

  • Rothschild, L. J.; Maurer, C.; Paulino Lima, I.; Senesky, D.; Wipat, A.; Head III, J.; team, S.-B. i.; Urbina, J.; Averesch, N.; Zajkowski, T. Myco-architecture off planet: growing surface structures at destination. ; Technical Report HQ-E-DAA-TN66707; NASA Ames Research Center, 2018.

  • Continue Reading

  • Cassava Technologies and Rockefeller Foundation Expand Access to Artificial Intelligence Computing to African NGOs

    Cassava Technologies and Rockefeller Foundation Expand Access to Artificial Intelligence Computing to African NGOs

    CAPE TOWN, SOUTH AFRICA | November 18, 2025 — Cassava Technologies (Cassava) and The Rockefeller Foundation announced a new effort to harness the transformative potential of artificial intelligence (AI) for good across Africa. Cassava, which previously announced plans to build Africa’s first AI factory powered with NVIDIA AI infrastructure, will provide access to compute capacity to several The Rockefeller Foundation’s grantees working in Ethiopia, Ghana, Kenya, Liberia, Nigeria, Rwanda, Sierra Leone, and Zimbabwe.

    While enabling Africa’s full participation in the US$1.2 trillion projected AI economy, this collaboration will boost productivity and power innovation at African organizations that are improving lives and livelihoods across the continent.

    “AI presents Africa with one of the best opportunities to drive economic development and access to economic opportunity for the continent’s youth. This requires investment in ensuring that AI developers across Africa have the resources and platforms to create solutions to Africa’s unique challenges. Powered by NVIDIA AI infrastructure, our AI factory will enable startups, enterprises, the public sector, and educational institutions to focus on developing AI applications using local datasets, languages, models, and voices to build inclusive solutions. We are excited to partner with the Rockefeller Foundation to bring local compute capacity to Africa’s AI ecosystem,” said Hardy Pemhiwa, President and Group CEO of Cassava Technologies.

    While nearly one-in-five people worldwide lives in Africa, the continent currently has less than 1% of global data center capacity. Africa’s AI market, which is currently estimated at $5.17 billion, is expected to grow exponentially over the next decade. Locally accessible computing capacity is necessary to power Africa’s AI ambitions.

    “AI can be transformative in the right hands, contributing to healthier communities, more productive farmers, and better education for children. If we get AI right in Africa, we can help Africans create jobs, advance opportunity, and pursue their dreams. Our collaboration with Cassava reflects The Rockefeller Foundation’s foundational belief that the latest advances in science and technology should serve everyone, not just the fortunate few, and that includes empowering African innovators with the tools they need to shape the continent’s future,” said Dr. Rajiv J. Shah, President of The Rockefeller Foundation.

    Through this new collaboration, Cassava and The Rockefeller Foundation are ensuring that African-led innovations in agriculture, healthcare, and education sectors have resources to improve outcomes with AI. Initial organizations that will benefit from this new collaboration include:

    • Digital Green, a company using AI in Ethiopia and Kenya to empower smallholder farmers with localized, real-time agricultural advice that increases productivity, resilience, and growth.

    “Farmer.Chat, Digital Green’s AI assistant, is reimagining how smallholder farmers access knowledge — delivering trusted, localized guidance at nearly 100x lower cost than traditional extension. With GPUs now available on the African continent, we can unlock breakthroughs in speech-to-text, local language translation, image recognition, and retrieval-augmented generation — dramatically reducing costs and expanding reach. This new capacity makes it possible to bring climate-smart, real-time advice to millions of farmers, while continuously improving accuracy, safety, and support for Africa’s diverse languages and agricultural ecologies. Our vision is simple but bold: to put the power of AI directly in the hands of every farmer, helping them grow more resilient, prosperous, and connected to the future.” Rikin Gandhi, CEO, Digital Green

    • Jacaranda Health, which is harnessing technology to improve the quality of care for mothers and their children in Kenya.

    “Jacaranda Health is deploying AI-powered tools that connect millions of mothers and babies with life-saving care in real-time. Access to advanced compute resources on the continent will accelerate our development of culturally-attuned, multilingual AI models while slashing costs — enabling us to reach millions of women with critical health information in their native languages. This infrastructure will prevent maternal deaths, empower informed healthcare decisions, and build Africa’s capacity to solve its own health challenges with homegrown AI innovation.” — Cynthia Kahumbura, Co-Executive Director, Jacaranda Health.

    • Rising Academies, a West African company leveraging technology to improve outcomes for more than 250,000 students in Ghana, Liberia, Rwanda, and Sierra Leone.

    “In just one academic year, we’ve seen how AI can reshape learning in Rwanda’s classrooms. More than 13,000 students gained access to structured literacy and numeracy content, teachers cut grading time by 60% through LearnLens, and 85% of learners told us they enjoy using Rori to strengthen their math skills. One student in rural Rwanda told us that technology is no longer just for city children, but for those of us in rural areas as well. Our vision is clear: to make effective, inclusive, and locally relevant learning support available to every child — helping them thrive today and shape the future of our country.” — Fidele Hagenimana, Head of Rwanda Programs, Rising Academies.

    This year, Cassava launched its GPU-as-a-Service (GPUaaS), housed in its secure data center facilities, powered by NVIDIA AI infrastructure. The company continues to invest in the infrastructure across additional hubs in East, West and North Africa; thereby reinforcing its broader commitment to responsible AI adoption, innovation and productivity growth in Africa. The collaboration highlights Cassava’s commitment to ensuring that GPUaas is accessible to organizations working throughout the social sector.

    “Cassava’s collaborations with key stakeholders are critically important to the development of Africa’s AI ecosystem to ensure that Africans are not just consumers of AI, but builders of it. This partnership with The Rockefeller Foundation highlights Cassava’s intent to lay the foundations for an ecosystem that is inclusive, sustainable, and globally competitive,” concluded Hardy.


    About Cassava Technologies

    Cassava Technologies is a global technology leader of African heritage providing a vertically integrated ecosystem of digital services and infrastructure enabling digital transformation. Headquartered in the UK, Cassava has a presence across Africa, the Middle East, Latin America and the United States of America. Through its business units, namely, Cassava AI, Liquid Intelligent Technologies, Liquid C2, Africa Data Centres, and Sasai Fintech, the company provides its customers’ products and services in 94 countries. These solutions drive the company’s ambition of establishing itself as a leading global technology company of African heritage. https://www.cassavatechnologies.com/.

    About The Rockefeller Foundation

    The Rockefeller Foundation is a pioneering philanthropy built on collaborative partnerships at the frontiers of science, technology, and innovation that enable individuals, families, and communities to flourish. We make big bets to promote the well-being of humanity. Today, we are focused on advancing human opportunity and reversing the climate crisis by transforming systems in food, health, energy, and finance, including engaging through our public charity, RF Catalytic Capital (RFCC). For more information, sign up for our newsletter at www.rockefellerfoundation.org/subscribe and follow us on X @RockefellerFdn and LinkedIn @the-rockefeller-foundation.


    Continue Reading

  • Stock market sell-off continues, as Google boss warns ‘no company immune’ if AI bubble bursts – business live | Business

    Stock market sell-off continues, as Google boss warns ‘no company immune’ if AI bubble bursts – business live | Business

    Introduction: Market selloff continues

    Good morning, and welcome to our rolling coverage of business, the financial markets and the world economy.

    Global markets are racking up their fourth day of losses in a row, as concerns over technology valuations are worrying investors.

    Asia-Pacific stocks have dipped to a one-month low today, amid signs that the enthusiasm that has driven stocks higher in recent months is fading, with shares, risky currencies and crypto assets all sliding

    MSCI’s broadest index of Asia-Pacific shares outside Japan has lost 1.8%, slipping to its lowest level since mid-October. South Korea’s KOSPI has lost 3.5%, and Hong Kong’s Hang Seng is down 1.9%.

    Japan’s Nikkei 225 is also having a very rough day, down over 3%, on concerns over an escalating dispute with China over Taiwan

    Last night, the US stock market fell, with the S&P 500 share index closing at its lowest level in a month.

    European stock markets are heading for losses when trading begins at 8am GMT too.

    Various reasons are being cited for the mood change. Investors are fretting that US interest rates may not be cut as quickly as hoped, following hawkish commentary from some policymakers.

    Jitters are building ahead of AI behemoth Nvidia’s results on Wednesday night.

    The huge sums of money being committed by AI companies to fund their infrastructure is also raising eyebrows, especially as it is being increasingly funded by debt.

    Last night, Amazon raised $15bn in its first US dollar bond offering in three years, adding to a spree of jumbo debt sales by technology firms as they race to fund artificial-intelligence infrastructure.

    Michael Brown, senior research strategist at brokerage Pepperstone, explains:

    Those Nvidia earnings, incidentally, once again stand as a major macro risk, as enthusiasm around the whole AI frenzy seems to ebb, with the market having shifted from an ‘all capex is good capex’ mood, to one where whether firms are actually able to monetise that expenditure has become the million (or more!) dollar question.

    On that note, Amazon kicking-off a six-part bond sale didn’t help matters much yesterday, following hot on the heels of similar sales from Meta and Alphabet in recent weeks, and further fuelling concern that AI expansion is now being fuelled by debt, and not by free cash flow, in turn exacerbating jitters over the sustainability of all the spending that we currently see.

    The agenda

    • 10am GMT: Treasury Committee hearing on risks and rewards of embracing crypto

    • 1pm GMT: Huw Pill, Bank of England’s chief economist, to give speech at Skinners Hall, London

    • 3pm GMT: US factory orders and durable goods data for August (delayed by lockdown)

    Share

    Key events

    Julia Pyke, joint managing director of the nuclear power project Sizewell C, said:

    Cornwall Insight’s analysis shows exactly why Britain needs more nuclear, not less.

    A stable, low-carbon baseload from projects such as Sizewell C avoids the expensive system charges that households are now paying for and protects the UK from volatile markets from overseas.

    She said the RAB (regulated asset base) contribution, a new charge on UK electricity bills to help fund new nuclear power stations, is little more than £10 a year,

    but it unlocks at least 60 years of clean, reliable, homegrown power that can stabilise bills for generations and creates tens of thousands of British jobs and opportunities which completely transforms communities.

    Share

    Continue Reading

  • Air Europa signs MoU for up to 40 Airbus A350-900

    Air Europa signs MoU for up to 40 Airbus A350-900

    Dubai, United Arab Emirates, 18 November 2025 – Spanish airline Air Europa has signed a Memorandum of Understanding (MoU) with Airbus for up to 40 A350-900 aircraft. The agreement forms the backbone of Air Europa’s long haul fleet replacement and was announced during  the Dubai Airshow. 

    The introduction of the A350 will accelerate the renewal of Air Europa’s existing competitor long haul fleet and boost profitable growth to key markets in Latin America thanks to the aircraft’s unrivalled performance and economics. Passengers will also experience exceptional best in class comfort.

    “This order is a strategic milestone in Air Europa’s fleet development, accelerating its profitable growth by renewal of the current widebody fleet,” said Juan Jose Hidalgo, President of Air Europa. “The A350-900 is a game-changer for key destinations in Latin America. It provides an exceptional cabin experience and the operational performance and economics needed to expand the airline’s network without compromise, delivering the highest standards in air travel.”

    “We are proud to welcome Air Europa into the Airbus A350 family. This order is a strong endorsement of the A350 as the benchmark widebody platform for efficiency and passenger comfort in the long-haul market,” said Benoît de Saint-Exupéry, Airbus EVP Sales of the Commercial Aircraft business. “We are committed to supporting Air Europa’s ambitious growth strategy as they leverage the A350’s capabilities for their future long-haul operations.” 

    ​The A350 is the world’s most modern widebody aircraft, designed to fly up to 9,700 nautical miles / 18,000 kilometres non-stop, setting new standards for intercontinental travel. The aircraft includes state-of-the-art technologies and aerodynamics delivering unmatched standards of efficiency and comfort. Its latest generation Rolls-Royce engines and use of lightweight materials bring a 25% advantage in fuel burn, operating costs and carbon dioxide (CO₂) emissions, compared to previous generation competitor aircraft. The A350’s unique Airspace cabin offers passengers and crews the latest modern in-flight products for a comfortable flying experience.

    As with all Airbus aircraft, the A350 is able to operate with up to 50% Sustainable Aviation Fuel (SAF). Airbus is targeting to have its aircraft up to 100% SAF capable by 2030.

    At the end of October 2025, the A350 Family had won over 1,400 orders from 64 customers worldwide.

    @AirEuropa @Airbus #A350 #DAS25

    Continue Reading

  • Siemens and Samsung C&T partner to drive next-generation infrastructure projects | Press | Company

    Siemens and Samsung C&T partner to drive next-generation infrastructure projects | Press | Company

    [{“nid”:0,”name”:”Products & Solutions”,”tid”:0,”url_str”:”https://www.siemens.com/global/en/products.html”,”alias”:”https://www.siemens.com/global/en/products.html”,”level”:1,”image”:{“fid”:false,”furl”:””},”options”:{“menu_icon”:{“fid”:false},”external”:true},”depth”:1,”parent”:false,”children”:[]},{“nid”:0,”name”:”Industries”,”tid”:1,”url_str”:”https://xcelerator.siemens.com/global/en/industries.html”,”alias”:”https://xcelerator.siemens.com/global/en/industries.html”,”level”:1,”image”:{“fid”:false,”furl”:””},”options”:{“menu_icon”:{“fid”:false},”external”:true},”depth”:1,”parent”:false,”children”:[]},{“nid”:0,”name”:”Company”,”tid”:2,”url_str”:”https://www.siemens.com/global/en/company.html”,”alias”:”https://www.siemens.com/global/en/company.html”,”level”:1,”image”:{“fid”:false,”furl”:””},”options”:{“menu_icon”:{“fid”:false},”external”:true},”depth”:1,”parent”:false,”children”:[]}]

    Continue Reading