Li, Y. et al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J. Biol. Chem. 284, 34283–34295 (2009).
CAS
PubMed
PubMed Central
Google Scholar
Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Carpizo, V. et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci. Rep. 6, 32952 (2016).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Sengupta, D. et al. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol. Cell 81, 4481–4492 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Lhoumaud, P. et al. NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains. Nat. Commun. 10, 4843 (2019).
ADS
PubMed
PubMed Central
Google Scholar
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
ADS
CAS
PubMed
Google Scholar
Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).
CAS
PubMed
PubMed Central
Google Scholar
Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).
CAS
PubMed
Google Scholar
Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).
CAS
PubMed
PubMed Central
Google Scholar
Popovic, R. et al. Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet. 10, e1004566 (2014).
PubMed
PubMed Central
Google Scholar
Yuan, G. et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 590, 504–508 (2021).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Jani, K. S. et al. Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. Proc. Natl Acad. Sci. USA 116, 8295–8300 (2019).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Finogenova, K. et al. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 9, e61964 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Li, J., Ahn, J. H. & Wang, G. G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell. Mol. Life Sci. 76, 2899–2916 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 26, 880–889 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Bennett, R. L., Swaroop, A., Troche, C. & Licht, J. D. The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer. Cold Spring Harb. Perspect. Med. 7, a026708 (2017).
PubMed
PubMed Central
Google Scholar
Bergsagel, P. L. & Chesi, M. Immunocompetent mouse models of multiple myeloma. Semin. Hematol. 38, 533–546 (2024).
Google Scholar
Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).
CAS
PubMed
PubMed Central
Google Scholar
Larrayoz, M. et al. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat. Med. 29, 632–645 (2023).
CAS
PubMed
PubMed Central
Google Scholar
Oyer, J. A. et al. Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia 28, 198–201 (2014).
CAS
PubMed
Google Scholar
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
ADS
Google Scholar
Hudlebusch, H. R. et al. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors. Clin. Cancer Res. 17, 2919–2933 (2011).
CAS
PubMed
Google Scholar
Aytes, A. et al. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat. Commun. 9, 5201 (2018).
ADS
PubMed
PubMed Central
Google Scholar
Li, N. et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J. Clin. Invest. 127, 1284–1302 (2017).
PubMed
PubMed Central
Google Scholar
Parolia, A. et al. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. Nat. Genet. 56, 2132–2143 (2024).
CAS
PubMed
PubMed Central
Google Scholar
Yuan, S. et al. Global regulation of the histone mark H3K36me2 underlies epithelial plasticity and metastatic progression. Cancer Discov. 10, 854–871 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Brown, B. A. et al. A histone methylation–MAPK signaling axis drives durable epithelial–mesenchymal transition in hypoxic pancreatic cancer. Cancer Res. 84, 1764–1780 (2024).
CAS
PubMed
PubMed Central
Google Scholar
Bhat, K. P., Umit Kaniskan, H., Jin, J. & Gozani, O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug Discov. 20, 265–286 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Perurena, N., Situ, L. & Cichowski, K. Combinatorial strategies to target RAS-driven cancers. Nat. Rev. Cancer 24, 316–337 (2024).
CAS
PubMed
Google Scholar
Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 (2022).
CAS
PubMed
PubMed Central
Google Scholar
Popow, J. et al. Targeting cancer with small-molecule pan-KRAS degraders. Science 385, 1338–1347 (2024).
CAS
PubMed
Google Scholar
Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat. Med. 28, 2171–2182 (2022).
CAS
PubMed
Google Scholar
Oya, Y., Imaizumi, K. & Mitsudomi, T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 194, 107886 (2024).
CAS
PubMed
Google Scholar
Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Akhave, N. S., Biter, A. B. & Hong, D. S. Mechanisms of resistance to KRAS-targeted therapy. Cancer Discov. 11, 1345–1352 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Francis, J. W. et al. FAM86A methylation of eEF2 links mRNA translation elongation to tumorigenesis. Mol. Cell 84, 1753–1763 (2024).
CAS
PubMed
PubMed Central
Google Scholar
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).
CAS
PubMed
Google Scholar
Deng, H. et al. Piperidinyl-methyl-purine amines as NSD2 inhibitors and anti-cancer agents. WIPO patent WO2021028854A1 (2021).
Le, K. et al. Heterocyclesas modulators of NSD activity. WIPO patent WO2024073282 (2024).
Li, W. et al. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature 590, 498–503 (2021).
ADS
CAS
PubMed
Google Scholar
Sato, K. et al. Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2. Nat. Commun. 12, 6605 (2021).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Shipman, G. A. et al. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Genome Biol. 25, 263 (2024).
CAS
PubMed
PubMed Central
Google Scholar
Liu, L. et al. Discovery of LLC0424 as a potent and selective in vivo NSD2 PROTAC degrader. J. Med. Chem. 67, 6938–6951 (2024).
CAS
PubMed
PubMed Central
Google Scholar
LegaardAndersson, J. et al. Discovery of NSD2-degraders from novel and selective DEL hits. ChemBioChem 24, e202300515 (2023).
CAS
PubMed
Google Scholar
Meng, F. et al. Discovery of a first-in-class degrader for nuclear receptor binding SET domain protein 2 (NSD2) and ikaros/aiolos. J. Med. Chem. 65, 10611–10625 (2022).
CAS
PubMed
PubMed Central
Google Scholar
Nie, D. Y. et al. Recruitment of FBXO22 for targeted degradation of NSD2. Nat. Chem. Biol. 20, 1597–1607 (2024).
CAS
PubMed
Google Scholar
Hanley, R. P. et al. Discovery of a potent and selective targeted NSD2 degrader for the reduction of H3K36me2. J. Am. Chem. Soc. 145, 8176–8188 (2023).
CAS
PubMed
PubMed Central
Google Scholar
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
CAS
PubMed
Google Scholar
Ponnaluri, V. K. C. et al. NicE-seq: high resolution open chromatin profiling. Genome Biol. 18, 122 (2017).
PubMed
PubMed Central
Google Scholar
Alonso-Curbelo, D. et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Grutzmann, R. et al. Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene 24, 5079–5088 (2005).
PubMed
Google Scholar
Sun, Z. et al. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol. Cell 83, 2398–2416 (2023).
CAS
PubMed
PubMed Central
Google Scholar
Janne, P. A. et al. Adagrasib in non-Small-cell lung cancer harboring a KRASG12C mutation. N. Engl. J. Med. 387, 120–131 (2022).
CAS
PubMed
Google Scholar
Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 50, W739–W743 (2022).
CAS
PubMed
PubMed Central
Google Scholar
Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 (2022).
CAS
PubMed
PubMed Central
Google Scholar
Wei, J. et al. Discovery of a highly potent and selective inhibitor targeting protein lysine methyltransferase NSD2. J. Med. Chem. 67, 16056–16071 (2024).
CAS
PubMed
Google Scholar
Bon, C., Halby, L. & Arimondo, P. B. Bisubstrate inhibitors: the promise of a selective and potent chemical inhibition of epigenetic ‘writers’. Epigenomics 12, 1479–1482 (2020).
CAS
PubMed
Google Scholar
Ma, X. et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun. 6, 6604 (2015).
ADS
CAS
PubMed
Google Scholar
Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).
CAS
PubMed
PubMed Central
Google Scholar
De Vito, C. et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 21, 807–821 (2012).
PubMed
Google Scholar
Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Mureddu, L. & Vuister, G. W. Simple high-resolution NMR spectroscopy as a tool in molecular biology. FEBS J. 286, 2035–2042 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).
CAS
PubMed
PubMed Central
Google Scholar
Honorato, R. V. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 19, 3219–3241 (2024).
CAS
PubMed
Google Scholar
Shukla, S. et al. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nat. Chem. Biol. 17, 784–793 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Tisi, D. et al. Structure of the epigenetic oncogene MMSET and inhibition by N-alkyl sinefungin derivatives. ACS Chem. Biol. 11, 3093–3105 (2016).
CAS
PubMed
Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).
CAS
PubMed
PubMed Central
Google Scholar
Schuttelkopf, A. W. & van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004).
ADS
PubMed
Google Scholar
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
CAS
PubMed
Google Scholar
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
ADS
CAS
Google Scholar
Sidoli, S., Bhanu, N. V., Karch, K. R., Wang, X. & Garcia, B. A. Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J. Vis. Exp. 111, 54112 (2016).
Google Scholar
Bhanu, N. V., Sidoli, S. & Garcia, B. A. A workflow for ultra-rapid analysis of histone post-translational modifications with direct-injection mass spectrometry. Bio. Protoc. 10, e3756 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Yuan, Z. F. et al. EpiProfile quantifies histone peptides with modifications by extracting retention time and intensity in high-resolution mass spectra. Mol. Cell. Proteomics 14, 1696–1707 (2015).
CAS
PubMed
PubMed Central
Google Scholar
Marunde, M. R. et al. Nucleosome conformation dictates the histone code. eLife 13, e78866 (2024).
CAS
PubMed
PubMed Central
Google Scholar
Yusufova, N. et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589, 299–305 (2021).
ADS
CAS
PubMed
Google Scholar
Shah, R. N. et al. Examining the roles of H3K4 methylation states with systematically characterized antibodies. Mol. Cell 72, 162–177 (2018).
CAS
PubMed
PubMed Central
Google Scholar
Vishnu, U. S., Esteve, P. O., Chin, H. G. & Pradhan, S. One-pot universal NicE-seq: all enzymatic downstream processing of 4% formaldehyde crosslinked cells for chromatin accessibility genomics. Epigenetics Chromatin 14, 53 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
CAS
PubMed
Google Scholar
Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
CAS
PubMed
PubMed Central
Google Scholar
Curras-Alonso, S. et al. An interactive murine single-cell atlas of the lung responses to radiation injury. Nat. Commun. 14, 2445 (2023).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2019).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
CAS
PubMed
PubMed Central
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database 2017, bax028 (2017).
PubMed
PubMed Central
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 3 (2011).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
CAS
PubMed
PubMed Central
Google Scholar
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
PubMed
PubMed Central
Google Scholar
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
ADS
PubMed
PubMed Central
Google Scholar
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
CAS
PubMed
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
PubMed
PubMed Central
Google Scholar
Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
CAS
PubMed
PubMed Central
Google Scholar
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed
PubMed Central
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
CAS
PubMed
PubMed Central
Google Scholar
Orlando, D. A. et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 9, 1163–1170 (2014).
CAS
PubMed
Google Scholar
Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, D662–D669 (2015).
CAS
PubMed
Google Scholar
Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).
CAS
PubMed
Google Scholar
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
PubMed
PubMed Central
Google Scholar
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).
CAS
PubMed
Google Scholar
Kawaguchi, Y. et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet. 32, 128–134 (2002).
CAS
PubMed
Google Scholar
Baranczewski, P. et al. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol. Rep. 58, 453–472 (2006).
CAS
PubMed
Google Scholar
Park, J. et al. SMYD5 methylation of rpL40 links ribosomal output to gastric cancer. Nature 632, 656–663 (2024).
CAS
PubMed
PubMed Central
Google Scholar
Lu, X., Lofgren, S. M., Zhao, Y. & Mazur, P. K. Multiplexed transcriptomic profiling of the fate of human CAR T cells in vivo via genetic barcoding with shielded small nucleotides. Nat. Biomed. Eng. 7, 1170–1187 (2023).
CAS
PubMed
Google Scholar
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
CAS
PubMed
PubMed Central
Google Scholar
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).
CAS
PubMed
PubMed Central
Google Scholar
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
CAS
PubMed
PubMed Central
Google Scholar
Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).
ADS
CAS
PubMed
Google Scholar
Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).
ADS
PubMed
PubMed Central
Google Scholar
Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).
CAS
PubMed
PubMed Central
Google Scholar